The Hackers Handbook
Part 1 - Cracks & Numbers

Part 2 - The Cracking Guide

Part 1

Here it is. First in the series of the Infamous Atom's mac crack series. Some of you may have macs, others just wonder how yot
crack on the mac. In this series I'll attempt to show you the basics of cracking on a mac and hopefully give you an idea of the
difficultly and difference between Apple][and Mac cracking.

1) Things that make Mac cracking easier than Apple][:

A) All code segments must be stored on the disk in normal format. No abnormal headers or anything that cannot be
read with the normal ROM read routine.(data can be stored otherwise though)

B) Protection on the mac has used fairly simple techniques since the programmers don't know all the tricks that they d«
on the ll

C) All disk 1/0 has to pass through the IWM chip and thus you can't have half and spiral tracking.

2) Things that make Mac cracking harder than Apple][:

A) No debugger(or monitor) in ROM.. Macsbug is a software debugger only and therefore can be destroyed by som
nasty programs(EA does it on all of theirs)

B) Programs have much more memory to play with. Instead of 0-$C000, you have $0-$400000 (of course most of the
top is ROM.)

C) Virtually no documentation on non-standard read routines. Basically have to figure it out yourself.

The first thing you need to do before attempting a crack on the Mac is learn 68000 assembly (duuh...) WELL!! don't just look a
it and assume you know it!! You must really understand the addressing modes and especially how the stack is handled
EVERYTHING on the Mac uses the stack. The code you are following is constantly calculating addresses and placing them on the
stack to RTS to. Also, pick up a copy of Inside Mac so you can get a basic Idea of the ROM traps (there are over 300).

If you want to look for books, | suggest 68000 assembly by Leventhal and the Inside Mac phonebook or vol.1-3 from Apple.

Next time, I'll start showing you some traps, and a little 68000, then we'll jump right in to the debugger and cracking a ware
Wizardry!

Welcome to part 2 of The Atom's guide to Mac cracking-

Today's Topic- 68000 assembly and Mac Traps

By now, | assume you have looked at the 68000 assembly language somewhat and can at least understand small sections o
code. Just to clarify things, and teach you some machine-dependent ideas (for the mac that is), I'll devote this part of the
cracking series to the 68000 and traps/interrupts.

First of all, the 68000 is a two instruction machine, unlike the 6502. This means that most commands have 2 arguments rathe
than one (as the 6502 has). IE> MOVE DO0,#$1000 instead of STA #$1000. This makes life much easier, especially with the use
of multiple registers. (68000 has 17, compared to the 4 on the 6502). These registers are labelled D0O-7, A0-7, and the
processor status reg. The registers starting with D are data registers which are 32 bits long. You can store any kind of 32 bi
number in them. The address registers, (denoted by A), are also 32 bits long but can only refer to even numbered addresse:
and are not valid for all modes. (Don't worry if it doesn't make much sense, you'll get the hang of it.)

Soo0o0... Now we know about registers. How about operands? Unlike the 6502, which has a different command for each register
the 68000 has a standard set of commands which can work with all the regs.

Instead of: STA $1000 or STY $1000,
You would have: MOVE D0,$1000 or MOVE D1,$1000

The MOVE command is the basic operand to move data from one place to another. Be it from reg to reg (MOVE DO,D1) ol
memory to memory (MOVE $1000,$2000), or whatever.

Most of the other commands are similar to 6502, and work pretty much the same (JSR, RTS, CMP, BEQ, BNE, etc.). There is one
other addition to the syntax you should know: the .B, .W, and .L suffixes. These refer to byte, word, and long data commands
By adding any of these to the end of an operand, you limit the command to only that size of data. For instance, a MOVE.E
D0,D1 would move the lowest 8 bits of DO into the first 8 bits of D1. The word command uses 16 bits, and long word uses all 32
These can be added to most commands that manipulate data, like CMP, CLR, MOV, ROL, etc. If you ignore the syntax, it default:
to .W.

Now we get to Addressing modes: On the 6502, you had different syntax for addressing, and its about the same on the 68000
An indirect jump (JMP ($1000)) would become JMP ($1000)... really hard huh? You can use inderict addressing in MOVI
commands also: MOVE (A0),D1. This would move the contents of whatever address was in AO into D1. (IF $1000 was in AOQ, ther
the word at $1000 would go to D1). One note, the indirect mode can only be used with the address registers, not the datz:
registers.

Finally, there are the auto-increment and auto-decrement indirect modes. If you did a MOVE (A0)+,D1 (and A0 was $1000), i
would the contents of $1000 into D1, and then automatically increment AO so it now points to $1002. (It increments by 2 since
it moved a word (2 bytes) and each address points to a byte (in effect, its now pointing to the next WORD)). Auto-decremen
works basically the same way, a MOVE -(A0),D1, would decrement the address in A0 by 2, then move the contents of $FFE intc
D1. The placement of the - or + is the way its set up, so you can't do a MOVE +(A0),D1 or MOV (A0)-,D1.

And a couple more sytnax things- there are no stack commands (PHA,etc.), they use the auto-inc and auto-dec modes t
implement a stack with the A7 register. It's kind of complicated exactly how it works, so | won't go into it here, but just assume
that MOVE DO,-(A7) pushes DO onto the stack and MOVE (A7)+,D0 pops the value off the stack into DO. (the A7 is sometime:
replaced by SP as in MOVE DO,-(SP)).

So now we know everything there is to know about 68000 assembly, right?

Wrong... but we know enough to crack something!

But before | start talking about the debugger, I'll mention something about the traps on the 68000. Since all ROM routines are
called through these, it pays to know what they are.

First of all, when the 68000 finds an opcode it doesnt know (some code that doesn't translate into an executable instruction), i
will look in a trap table to see if there is a replacement code for it. This way, you can implement your own 68000 commands by
putting the address of your routine into the trap table and simply issuing the command. On the Mac, the trap tables are in low
memory and point to ROM routines. Since the routines are always in the same place with the same ROMs, the debugger keeps :
table of these traps and will actually name them for you in the code. So while listing a section of memory, you may see
something like this:

_InitGraf
_InitFonts
_InitWindows
MOVE #14,D0
MOVE DO,-(SP)

_Read

What it is doing is calling three rom routines to initialize different sections of the window management, executing a couple o
68000 instructions and then calling the Read ROM routine to read from the disk. Fairly simple, right? It does make cracking
quite a bit easier, as long as you know what most of the traps do. So be sure and have a copy of Inside Mac at hand when yot
start to debug/crack something.(and lots of paper).

Well, next time, we'll look at the debugger and start trying to crack a few warez...

Part 3

Here we are again, with the 3rd installment of "Mac Cracking- man or myth?"

(or something like that).

The topic of discussion in this section will be the DEBUGGER. Otherwise known as MacsBug. If you end up doing much cracking
at all, you'll begin to love (and hate) some of MacsBug's commands, and you should get fairly familiar with reading othe
people's 68000 code.(or compiler code).

First, a couple notes about MacsBug: To run it, you must have the MacsBug file on the disk you are booting up, and it must be
named MacsBug exactly, (well, case doesnt matter, but otherwise, exactly like that). If you are using the HFS system, it must be
in the system folder along with the system and finder files. Also, don't forget to install the little programmer's switch in the side
of your mac. If you don't have it in, you can't even start up MacsBug!

Ok, well, I'll start by talking about how MacsBug is loaded in, set up, and then list some commands and show you som
examples.

Booting up-

When the mac boots up, it reads a bunch of system related stuff from the boot disk, initializes the Font, QuickDraw, Resource
and other managers, and then throws up a Dialog saying "Welcome to Macintosh". It then looks for a file name MacsBug on the
disk, and if it finds it, it allocates some extra memory for it and then loads it in and sets it all up. Macsbug takes up about 40k
so for large programs, running on a 128k, you may not be able to load it.(get a 512k!)

Basically what MacsBug does when it sets up is change a few pointers in low RAM that used to point to error routines to point tc
it. Like the error when you hit the interrupt button on the side of the computer (plus a few more). So now, when you hit the
interrupt button, instead of getting a bomb dialog, a new window will pop up, covering most of the screen, with a dump of al
the registers (D0-D7 and A0-A7 as well as the PC and some other info). You are now in MacsBug! You have stolen control of the
68000 from the executing program and can now debug (or crack) to your hearts content but first, you need to know the
MacsBug commands!

Commands

MacsBug has a lot of commands. At least 40. It basically works the same as the monitor on a Il, but with different syntax, and :
bunch of nice tracing functions. They are set up in a general format of a one or two word command, followed by a few numeric
parameters.

What follows is a partial list of the basic commands we will be using to crack Wizardry, and some explanation for each. To get ¢
list of all the commands, look in your Inside Mac manual under the section called "INSIDE MACSBUG" (only in newer versions).

Oh yea, forgot to mention, I'm using MacsBug V5.1. These commands work with all versions 5.0 and higher. (You can check you
version of MacsBug by typing DV <cr> at the prompt.)

(aaaa = address, nnnn = number)

Memory Commands:

DM aaaa nnnn Display memory- gives you hex dump of the bytes starting at aaaa and going up to address aaaa+nnnn
Ex. DM OF00 10 would dump out hex from $F00 to $F10. If you leave out the nnnn, it lists the next 16 bytes. If yol
leave out aaaa, it starts at the current address.

SM aaaa nn,nnl,nn2... Set memory- changes value in address aaaa to nn, then address aaaa+1 to nnl, etc.

TD Total Display- dumps out all the registers, PC and disassembles the current line.

Break Commands:

BR aaaa Sets a break point at address aaaa. When the program executes the line at aaaa, it will be interrupted and the
MacsBug window will pop up.

G aaaa Just like the Apple][, starts execution at aaaa. If you leave off aaaa, it starts where the PC last was.

GT aaaa Very nice command, starts executing at the PC, and then stops and returns to MacsBug when it gets to addres:
aaaa (easier than setting breakpoints).

T Trace, executes one instruction, then dumps out the registers and disassembles the next line.

MR Magic Return. If you are tracing along, and suddenly encounter a JSR, you can type MR and it will execute the
subroutine and then return you to trace mode right after it gets a RTS.

A Trap Commands:

(these are probably the most important, be sure you understand them)

AB TRAPNAME Causes the computer to halt and return to MacsBug when it sees a TRAP command that is referred to by
TRAPNAME. Ex. AB READ would stop the next time the program does a READ call.

AT TRAPNAME Traces and displays the address of each call to the trap TRAPNAME. Doesnt halt though. Ex. AT EJEC
would show the address of each line that the program executed that called the EJECT trap, and then continue executinc
the program.

AX Clear all trap commands. (so it won't stop everytime it does a READ anymore)

Disassembler commands:

IL aaaa nnnn List out disassembled code starting at address aaaa and going until address aaaa+nnnn. Just like the |
command on the][. If you just enter IL <CR> it will list out the next 10 or so instructions.

So those are all the commands you need to know! there are a bunch more, but they aren't as powerful or as easy to understanc
as these, so you can learn them on your own.

Just to give you and example of using the debugger, I'll show the steps you might use to find the starting address of a program:

1) put MacsBug on the disk with the program you are trying to find the starting address for. (Well, call it PROGRAM.)
2) Boot up the disk, and go to the desktop.
3) Press the interrupt button- you should see a big window pop up with a dump of the registers in it.

4) Type AB INITGRAF This tells MacsBug to stop the next time it encounters an _InitGraf call. (_InitGraf is usually one o
the first instructions applications run, so it will close to the starting address.)

5) Hit G to start the finder running again.

6) Double click on PROGRAM and hope for the best!

7) If all goes ok, MacsBug should pop up in a little while, displaying the address of the instruction that called _InitGraf.
8) Type IL aaaa, where aaaa is the address that MacsBug said the _InitGraf instruction was at.

9) Thats it! the beginning of the code for our application! from there, we could trace on using the T command anc
watch the execution of the program. Or hit G to give the program back full control of the 68000.

Don't forget to do an AX command when you are done, otherwise you will be jumping into macsbug everytime you run ar
application that calls _InitGraf.

Finally, I'd like to say something about MacsBug alternatives: | know of one great debugger called MCBUG. it works a lot like
MacsBug, but has a few extra features that help a lot, like a built in mini-assembler, some nice launch funtions, and a few othe
helpful commands. It's a shareware/public domain program, so if you look around you should be able to find a copy of it or
CompuServe or from a user group. It comes with docs, and installs just like MacsBug; simply rename it and boot!

Welcome to Part 4 of Mac Cracking- your guide to fame.

In this, the fourth, and hopefully final part, we will look at Wizardry and actually remove its protection. Of course, as we al
know, this is only for backup purposes, right?

So first we need to set up a copy of the disk to work on. Wizardry is an unusual protection, in that you can copy all the files of
the disk, but it asks you to put the master disk back in upon boot, and then reads some bad blocks off of the master disk. The
nice thing about this method is that it does not crash the machine if it can't find the master, it simply continues with a semi
demo game of Wiz. This saves a lot of time when you are constantly backtracking and reloading the files to find the protection.

Here we go!

First, sector copy (or finder copy) the files from the Wizardry disk onto a blank. Then trash the Imagewriter file (we need more
space for MacsBug). Copy MacsBug onto the Wizardry disk, and then select the Wizardry file, and install a MiniFinder with onl
Wizardry in the selection. This way, when the disk boots up, we can set up some breakpoints while the MiniFinder is running
and then execute Wizardry. If we let it boot straight into Wizardry, we would have to guess when to hit the interrupt switch anc
hope that we didn't miss something.

Now we have a disk to crack. Boot up the disk, and when you see the MiniFinder, hit the interrupt switch. MacsBug should come
up. Type AB INITGRAF <cr>. This will find the starting address of the program by halting when it starts initializing the managers
Now type G. You are back in the MiniFinder, so double click on the Wizardry file and wait for MacsBug to regain control.

At this point, MacsBug should appear saying it halted on an _InitGraf call at location F200 (this address will be differen
depending on your memory size. F200 is on a 512 or plus). You can now type IL F200 to start listing the code. As we look at the
code (hit return to see another 20 lines after you are done with a section) we see that the program contains no branching unti
address F222. The protection check is going to involve reading a sector from the disk and then branching on a result. So all we
have to look for is a branch after some disk access.

Type GT F222. Wizardry loads in some resources and sets up its menus and windows. If you booted up your copy of wizardry
normally, this is right before it puts up a dialog and asks for the key disk. Now we have to narrow down the search to a specifit
JSR. If you try GT F322, you see that it goes through the check and comes back with a message that you did not insert the
master disk. This means that the JSR to the protection routine is somewhere between F222 and F322. So now we look some
more!

(If you did try the GT F322, you can type EA to exit to the application, re-running Wizardry. It will abort again at the _InitGraf
and then you can type GT F222 to get back to where you belong.)

By continuing this process (trying locations closer and closer to F222 in the GT command) you will eventually find that the JSF
to the protection is at F31E. The program does not throw up a dialog saying you inserted the wrong disk before this JSR, bu
does draw a dialog at F322, the next statement. So we have tracked it down to a single JSR. Now we can have fun.

If we trace, using the T command at this subroutine, we find that it immediately executes a _LoadSeg trap. And then for some
mysterious reason, MacsBug never regains control. This is the tricky part- After the JSR to EFB7A (the _LoadSeg), the prograrn
loads the protection routine from disk AND loads code into EFB7A. Since the T command replaces the code at the nex
instruction with a break command in order to regain control after one step, this code is loaded on top of the break command
replacing it. This is why your MacsBug never comes back. There is not a break point to interrupt the program any more!

What we can do though, is interrupt with the interrupt switch after it brings up a dialog saying we inserted the wrong disk, anc
disassemble the code that was loaded into EFB7A. When we look there, we see it did a JMP to 13828. The code at 13828 wa
also loaded in with this loadseg trap, so we didnt see it before. This is the main protection routine.

But now we have a problem- how do we stop the execution of the program at 13828 so we can trace the protection and find the
correct branch? We can't set a breakpoint at 13828 with GT, since it would

get replaced with the code during the LoadSeg. And we can't stop it after the _LoadSeg since it replaces itself and an
breakpoints we set after it! What do we do?? Alas, MacsBug comes through with yet another amazing command. ST. This works
like the GT, but does not set a breakpoint to stop the program. (I'm not sure what it does to do this, but it uses the 68000 stey
flag.)

So we get back to F31E (using the EA command as before, then the GT). And type ST 13828. The reason we don't issue a ST
right after F200 is that the S commands slows execution of the program noticeably. You will have to wait a couple of minutes fo
the ST 13828 to return to MacsBug. (The drive will make some strange noises, but don't worry, just be patient.)

After this hard work, we are now in trace mode at 13828. Hurrah! Almost there. By repeating the method we used to find the
first JSR, and by reading the code, you find that the last branch that seperates a key disk dialog from the bad disk dialog is a
139D0. The BEQ +90 is executed if the protection check comes out bad. If you search the code, you see that the good code
continues 3 instructions from the address the BEQ branches to. So now we simply replace the BEQ with BRA +98, and nc
matter what the protection check returns, everything continues fine.

Now to test it to be sure our patch works. Boot the disk from scratch and get to

the trace mode at 13828 using the commands we used before. Now type SM 139D0 60 00 00 98. This is the code for a BR/
+98, which we are replacing at 139D0. Hit G, and there it is! Your copy should continue to load, and no matter what disk yot
put in for the master, it will thank you for inserting your "master" and continue along its merry way.

But we don't want to have to use MacsBug to do this EVERY time we boot up, so we'll change the program on the disk. First
dump the memory from the instructions before and after the BEQ +90 and write them down. Then run Fedit (its a sector edito
program) and open the file Wizardry on your cracking disk. Do a hex search for the values- 0A 00 00 01 67 00 00 90 30 2E FI
F2 (These are the bytes surrounding the instruction that you wrote down earlier. By searching for the whole string, we are sure
we have the correct BEQ +92 in the program, in case there is more than one). Go in to hex edit mode and replace the 67 00 Of
90 with 60 00 00 98 and write thesector back out.

Congratulations, you have successfully cracked Wizardry. You can copy the Wizardry file you patched onto your master disk, o
make the patch to a sector copy of the original to get the disk back looking like it normally did. (Auto boot into Wizardry, nc
MacsBug or MiniFinder, and with an ImageWriter file.)

So, concluding this discussion, I'll say that these are the methods that work for me, but you are welcome to try anything else
Mac Nosy is a good program for disassembling code you are trying to unprotect. And other protection schemes are ver)
different from Wizardry's. So practice on some other programs and with any luck, you'll be cracking everything you can ge
your hands on.

Also, a few problems with the above crack | would like to note. Although it does work fine (I've killed Werdna on a crackec
version), it is annoying to see the 3 dialogs at the beginning and also have it eject the disk twice. For further study, you migh
consider taking out the Ejects, so you don't have to re-insert the disk.

(Hint: you will not only have to take out the _Eject's, but also the routine that waits for another disk to be inserted. Since i
doesnt eject any more, there isn't any way to insert a disk!)

Just to help you along, I'll give the patches to remove the ejects and wait for insert disk routines:
Search for -> change to
20 5F A0 17 3E 80 4E D1 4E 56 -> 20 5F 3E BC 00 00
21 6E 00 OA 0012 A0 173D 40->216E000A00124E71
2F 2E 00 08 4E BA FF 66 A8 5E -> 2F 2E00 08 4E 71 4E 71
FF F4 66 20 48 7A 06 7TE48 7A-> FFF4 4E 71

(Just search for the first part, then change the bytes that are different in the second part. 4 patches in all plus the mair
protection patch.)

This introductory file is by no means the last word on assembly, cracking, etc. Some of the ideas of the Mac were simplified ir
order to bring you up to a good level of proficiency in a short time. Some of the functions do not work exactly as | outlined, bu
the ideas | presented are close enough for those who are beginners to the Mac world. If you are interested in the real inne
workings of the Mac, | suggest getting the Macintosh Revealed books from Hayden. They explain the traps and ROM routines ir
greater detail.

Copy Info

There are several programs currently that don't seem to be fully crackable. By bit copying the one or two protected track
and making a couple of patches, you can make them easily copyable, even though the original can't be copied at all. These
programs all use protection from the same company, and it works like this:

A nibble read of the protected track is done, then a search is made for the string ABCDEFEF where a data marker should be
They also write over low memory pointers that the debugger uses, so that the debugger will crash. Programs like this are:

HARRIER, ROUGE, GRID WARS, WINTER GAMES, ETC.
All have the following strings, which if you NOP them, will not destroy the debugger
Search for:2489 51C8 FFF2 46C3 Change to:4E71

Search for:12D8 51C8 FFFC 46C3 Change to:4E71

Once you find the code that must be changed to unprotect, it is found to be encoded on the disk, and decoded just before i
is used. On the HIPPO ALMANAC, the data was not only encoded, but the block of memory that it was in was reversed enc
for end.

Eve Protection Scheme

There is a way to get past the EVE protection scheme, but it's a bitch.From what | understand, you need to decompile the
routine that checks for the dongle, and them re-assign it to check that the machine has a simple serial port as opposed to
the info on the dongle itself. That info is virtually unreadable as it's encrypted, and pretty much useless to anything except
the app that's looking for it because it's mainly using for app reference.

Faces

or

Search for:4240 4840 80FC 0030 4840 3D40 Change t0:4280 etc.

It will ask you who beat Napoleon at Waterloo. The answer is Welling.

This program was pretty tough to crack until | first did Welltris. Why? Because it takes your password, stores it in memory
then compares it to the correct answer (only the first 4 digits, making the password a nice simple Long). However, if you d«
a simple crack it will then say bring you up to the screen with the start game button. If then checks the password again - i
it's wrong, then the program corrupts itself (thanks to SAM for telling me that!). This is very similar to Welltris, so | wa:
armed for the job.So, after the _GetlText the program pushes the return address (A5-142A) onto the stack, then you
password (A5-113). A JSR then stores your password with only the first 4 bytes, in lower-case at A5-142A. My simple crack
simply pushes the correct password (A5-12C), instead of your password. Then, when ever the program compares wha
should be your password, it's actually comparing it to itself! Har har.

KRAK PROCEDURE

The protection in Faces is fairly typical. The password dialog does not affect your game, it just compares your passwords
and has a local variable to say whether to quit or not, and it also stores your password elsewhere to be checked later.

The GetlText was also really close after the ModalDialog to make cracking quite simple.

This double password thing had me confused for a while because occasionaly it would corrupt on me, so | had to open the
damn archive again! | knew where to go in MacsBug, yet | just could figure how it knew to kill itself!

This crack was not too advanced, yet not too simple. | thank it's creators for making the PEA so simple to find. Although thi
program had no definate crack point, such as an _ExitToShell, or a BNE/BEQ/TST, etc. it was fairly obvious with the BLT tha
it's only concerned with the first 4 chars, therefore making it easy to find where it is actually moving and comparing
memory.

| couldn't find the exact place to not show the Dialog, so | merely jumped over the ModalDialog routine, so you will see i
flash onto the screen then disappear. That's OK.

Now, since | don't have a color Mac, | had to absolutely guess at cracking that one. It looks almost exactly the same in the
copy protection routine, except it's merely a few bytes down in CODE 3. If the crack doesn't work, don't blame me, just cal
me at christmas, and maybe I'll have a CQD machine.

Here is the complete crack:

CRACK PATCH

Open Faces 1.0 with ResEdit

Open CODE 3

Change CODE 3+$652 (just a few characters over from $650)
from: 486D 01CA

to: 603A 4E71

AND

Change CODE 3+$694 (just a few characters over from $690)
from: FEED

to: FED4

Open Color Faces 1.0 with ResEdit

Open CODE 3

Change CODE 3+$7C2 (just a few characters over from $7CO0)
from: 486D 017A

to: 603A 4E71

AND

Change CODE 3+$804 (just a few characters over from $800)
from: FEED

to: FED4

Fileguard
How to beat Fileguard!
Step one: Make a system disk with norton util, AND HDT
Restart machine holding down command-option-shift-delete
Run HDT, select "Install HDT Driver" (on the protected, but unmmounted volume)

Restart, File guard wont bother you anymore.

Hard Disk Ejects

It has come to our attention that many games are obnoxious when run (in cracked form) on a hard disk. These games cause
a warm reboot and bring down the hard disk. The solution -> use FEdit to scan the games for OS Trap A017 (_Eject) anc
replace it with ADF4 (_ReturnToFinder).

For example...

Game Fedit File Block Byte# Was Replace With
MacAttack 00C 0OBE AO017 ADF4
Frogger 00C 005C A017 ADF4
Frogger 00D 01B4 A017 ADF4

Image Express
Background

Image Express uses the Eve Protection Scheme. Basically the protection
scheme consists of 3 parts. 1) The Hardware device, 2) The Eve Init, and 3)
the code inside each application which compares the values.

The hardware device which hooks up to the ADB port houses a chip that |
assume has a value or a resource on it. | say assume because | do not have one
in my possession to check out.

The Eve init is basically a driver that gets installed onto the Eve at
bootup. And remains there until powerdown.

The Apps which are protected with Eve will read from the Eve and compare

values, if they match it will continue on with the program as normal if they
don't then a dialog will surface telling you that you either hooked up Eve
wrong or the init is not installed. If there is no Eve hooked up the same

dialog will surface telling you there is no Hardware key hooked up. etc.

Image Express is made up of 9 files in all. They are Camera, Demo Projector, Image Express, Transporter, Image Expres:
Launcher, Camera Launcher, Projector Launcher, Transporter Launcher and Eve Init. All of these Apps except Demc
Launcher are protected and have checks for Eve in there Apps at least once.

The launchers all use the same exact protection scheme but | have not really worked on them too much and so | have no
cracked any of them. The Eve Init is basically only values and some code in the crack | am working on the Eve Init will nc
longer be needed. The Camera application is somewhat tougher than the other applications; | have yet to crack it but | an
slowly making progress. | have cracked the Image Express App, the Projector App and the Transporter app. Here are the he;
changes:
Image Express
Search:3B5F F33A 4A6D F33A 6622
Change: 4E71
Search:4EAD 0B62 4EAD 166A 4EAD 16DA
Change:4E71 4E71 4E71 4E71 4E71 4E71
Search:4EAD 257A A9F4 4ESE 4E75
Change: 4E71
Projector:
Search:4A6D FDCE 664C 4EAD 056A
Change: 4E71
Transporter:
Search:3B5F FBB8 4A6D FBB8 6600 01E6
Change: 4E71 4E71
Search:57C0 4A00 6700 010E

Change: 4E71 4E71

Infini-D 1.0 01-1400-6350 31-9326-1679

Infini-D 1.02/1.1.1 31-9326-1679
Infini-D 1.02
Protection Scheme: Serial Number
Supplier: Far Side

Problem : Ok, a cool user on my board, Far Side, logged on new and since | was around spying on him, | decided tc
validated him before he got on. | should do, Infini-D1.02. | unpacked it and booted it sometime thereafter and noticed tha
the first thing that happens is a Serial Number Registration box comes up and asks me for my Name, Organization anc
Serial Number. Ug. Playing around with it, like | usually do, I noticed that if you try to hack out a Serial Number, it will jus
stay there like nothing happened. This is useful in determining how to go about cracking it because now | know | can no
just search for an _ExitToShell Trap (Hex-A9F4). By the way, | tried putting in some earlier version's serial numbers but the
do not work on the new version (1.02) at all.

Solution : So | cancelled out of the registration thing and got back to the Finder where | jumped into MacsBug. Then | set ¢
trap for _InitGraf (Hex-A86E) which is usually the first Trap executed by every program to init the graphics screen and wha
not. From here | double-clicked the App (Infini-D 1.02) and the cursor changed a little and found the trap. | scanned througt
a little, going nice and slow as to be careful noticing which JSR or JMP or branch would be the one to go to the Registratior
dialog. | went a little further, then it happened, so | went into MacsBug and found this as the last instruction before the
dialog box appeared:

Addr Instruction Hex Bytes
Who Cares JSR $0798 4EBA 0796

Ahh! How easy? It's a JSR, so all we have to do is change those bytes (4EBA 0796) to two No Operations (4E71 4E71). Thi:
crack was extremely easy, to tell you the truth. But it was fun none the less. | hope you enjoy it.

Hex Changes:
Search for: 4EBA 0796
(You should find this 2 times, at Sectors 392 & 3FE)

Change to : 4E71 4E71

MINIFINDER ZAP

For 3390 byte MiniFinder created Feb. 19, 1904 4:40 AM by CCOM. (If you don't have this version don't even think of tryinc
the following.) Important note! Use Fedit or an equivalent to zap the file. Block 1, positions 88 and 89 contain the number o
file types that MiniFinder looks for on a disk. Change Block 1 Position 89 from $01 to $02. Block 5, positions 408 througt
416 contain the type list and other apparently useless information (I zeroed almost everything out and it still worked)
Change Block 5 Positions 408 to 416

From: $00 $00 $6D $46 $69 $6E $64 $65 $72

To: $46 $4E $44 $52 $00 $00 $00 $00 $00

And that's it!

Now The Finder of other disks will appear in the scoll window of MiniFinder when it runs. One problem though, make sure
you have two drives. When the Finder of another disk is chosen to be opened, MiniFinder begins to execute it and then ask:
for the disk MiniFinder is on to be inserted into a drive if it is not online. If you do this by having to eject the disk with the
Finder that you wnat to boot, MiniFinder gets confused and crashes.

MultiDisk Partition Cracks
Here's how to do a MultiDisk Partion Crack:
The way you "crack" Performer is with MultiDisk. If you don't know what |

mean by that, he is the routine. Install The MultiDisk INIT, and DA. Reboot. Go to the DA. Create a partition that is a little
bit large than Pedrformer (and it's few extra files) needs. Mount it. Insert the Perfromer disk. Make sure it is NOT write
protected. Launch off the floppy. It will take you first to the HARD DISK INSTALL screen. Install onto the partition. Quit the
installer. Unmount the FLOPPY. Check out the partition, see if the install works (it will...). Drag the partition to the trast
(unmount it.). Open MacTools, etc., or whatever program you have that will, 1- let you see invisible files, and, 2- let yot
"uncheck" tthe invisible box, so as to make them visible on the desktop. Find the MultiDisk partition. It will be called
"MultiDisk Partition000000xxxxx" (lots of numbers, no matter...). Make it visible. Quit MacTools. Back to Finder. Finder the
partition FILE. Drag it into a folder. VERY IMPORTANT, you must get this file off the desktop, by dragging it into a folder. I
you don't, it will not copy properly! Open the folder you put it in. Slect the file. Hit command-D, and enjoy watching i
copy. Do it again, even. The last few numbers on the file will get replaced with the word copy. No worry, just delete the
letters c-0-p-y, and all will be ok. Now, get your floppy install back, so you can return it to whoever let you borrow it. Drac
one of these copies out of the folder, open MultiDisk DA, and mount it. Insert the orig floppy. Launch off the floppy, a:
before. This time, REMOVE the install. Quit installer. Take out the floppy, write protect it, and give back to friend. It i
now as it was before. Drag the partition to the trash (unmount). Also, Drag the MultiDisk FILE (the one on with all thost
numbers) to the trash. After all, you just removed the install from it, it is now worthless. Drag another one of the copie
out of the folder, use the DA to mount it, and you now have Performer (or Vision, or anything else you desire). Cop
protection bites the dust!!!! NOW, the files here on the Nest, like Performer, Vision, etc., are already partitions, you onl
need to dl MultiDisk. Make sure you keep a backup of MultiDisk, it likes to corrupt itself once in a while, and it will freak ou
if you are one a network.

Network Protection Scheme

Cracking a Network protection scheme is pretty easy. Registration on any LocalTalk network has to be done by a single ROM
call NBPRegister. The passed parameters to NBPRegister consist of a pointer to what is called an ABusRecord and :
Boolean. Ignore the Boolean and look in the ABusRecord for another pointer called the nbpEntityPtr. (The newer versions o
Nosy should decode these data structures for you.) Now find the data that is being passed in with the nbpEntityPtr (look fo
a PEA instruction), go to that data which will consist of a packed set of bytes corresponding to name:object:zone. Change
the name, leaving object and zone alone. Presto Jerry and the thing now cannot recognize itself as self.

Painter 2.0 0011187QBO (The last 3 are letters)

It's a bit of a tough one for you to try as a first crack, anyways i looked atit briefly the other day and this seemed to work,
later i realized that saving and printing didn't work and so it must have gone to demo - i made no attempt to comprehend
or decompile what the hash routine was, rather i simply tried to disable ever single check, so that wrong means right type
thing. I'm sure this is very close to the real thing that is needed.

Painter 2.0

GWIL

GWIL main CHANGES

+21A +FE 6718->6018
+286 +16A 6FB8->4E71
+2E2 +1C6 6FAC->4E71
+322 +206 6600 FEF8 -> 4E71 4E71
+3DA +2BE 6EB6->4E71
+40A +2EE 670C->4E71
CODE 2

+12EA 6600 FE46 -> 4E71 4E71
+131C 6FDB -> 4E71

+134C 6FD8 -> 4E71

oh and a tip , whenever using this type of crack info use resorcer instead of resedit as it has a better faster interface. Also
whenever you encouter code in a non-"CODE" resource, simply go to the preferences in resorcerer and tell it that , in this
case "GWIL" is a pseudonym for "CODE". ie add "GWIL" to the list, then you can view it as a code resource.

Panorama ll

Crack

| jumped into MacsBug and set a trap for _InitGraf, which is normally how ever program starts off. It went fine and | tracec
the code, but unfortunately, after tracing through, it killed me back to the Finder. They obviously protected against tracing
No prob, I clear the trap table, and then rung up an _ExitToShell trap. Then | ran the program and hit return and MacsBuc
caught the _ExitToShell call being executed. It looked something like this:

Addr Instruction Hex Bytes
004A55A4 _ExitToShell A9F4

004A55A6 CMPI.L #$00000001,-$6F52 (A4) 0CAC 0000 0001

004A55AE BNE.S +$001C 661A

So, | wrote down the hex bytes for a backup and then went to DisAsm to scan for _ExitToShell traps (A9F4 in Hex). | found -
right off the bat but they weren't the ones | was interested in because they didn't have the same bytes following them a:¢
the code above. So | kept on searching until DisAsm bombed into oblivion with an "Out of Memory xxxx" error or something
or other. | hate that! In any case, | booted up my FEdit+ 3.21 and searched for the bytes | needed and found them on secto
494 of the Panorama Application. So | changed the ExitToShell Trap (hex A9F4) to a NOP (hex 4E71) and booted the
program. The configuration dialog came up again and when | hit return, the program didn't quit but went on to the rest o
the program the right way. The APP was CRACKED! Yes! But like every good cracker knows this crack was half ass because
the dialog should not even come up in a well cracked ware. So | went back to FEdit and looked around at where | made the
changes. And found out a couple of bytes before where | made changes was where the program put the dialog up. So here
are the complete changes to the COMPLETE Panorama Il Crack:

Hex Changes
Search for: 6730 4EBA 02E8 4AAC 90AE 6602 A9F4 (Found on sector 494)
Change to : 6730 4E71 4E71 4E71 4E71 4E71 4E71

And the sn# is not the only thing you need to run panorama Il. Your Name, Company, Phone #, and SN# are coded into the
application so you need to use the crack.

But if you want your name SN# etc. in the program just look for the Panorama Il prefs in the Prefs folder and if it's there delete

it. Then run a virgin copy of Panorama Il and type in anything you want and say (OK or Cancel) then patch the Program and the
patched Program uses the Pref file you created in the Prefs folder and Voila

QuickFormat 7.0
Protection Scheme: Key Code Required to use special features
Scenario

Ok, | was calling around a few boards and as usual | make my rounds on the Buzzard's Nest(s). When calling BN Central
noticed someone posted asking me to remove the protection scheme from Quick Format 7.0. So | got it, and | have finally
gotten around to cracking it today. Oh well, sue me!

Problem

When launching the program an annoying dialog box comes up asking you to register the program with a KEY CODE to use
the advanced features of the package. If you typed in an INVLALID key code it will let you use the program with the few les
sophisticated functions.

Solution

So | quit out of the program and then jumped into MacsBug. | set a trap for the _INITGRAF (Hex-A86E) and | double-clicke
the Quick Format 7.0 Application.

| traced through to a very suspicious part of code that looked something like this:

Addr Instruction Hex Bytes

583834 JSR SETUPMEN 4EBA FE14

583838 JSRINITIALI 4EAD 02E2
58383C JSR INITGLOB 4EBA FEBE
583840 JSR VIRALCHE 4EBA FF22
583844 JSR CHECKMOD 4EBA F82A

Now, its pretty obviouse from just looking at the labels that they used that you can determine what is going on. In mos
cases people would not use LABELS like the ones used above, but since it is shareware and not a $500 commercial package
| can see why the author opted the easier route for programming ease. The first JSR would probably be him initializing hi
menus and stuff. The second JSR would be to initialize the screen and the fonts or whatever, the third JSR would b¢
Initializing the global variables he would need and the fourth would be to check for any virus, persay. The fifth however i
the routine he uses to check if the program has been Registered and brings up the dialog asking you to enter a key code. |
it hasn't be registered with the correct keycode the program turns off some options. But, that is not necessary, as by
omitting this JSR CHECKMOD you will remove the check and the program will run with all options available. Neat, eh?

Byte Changes (You should find the SEARCH string only ONE TIME!)

Search: 4EBA FE14 4EAD 02E2 4EBA FEBE 4EBA FF22 4EBA F82A

Change: 4E71 4E71
QuickFormat 7.1

CODE 3 +$3B6 From $6606 to $4E71

Railroad Tychoon

Find Hex string 0684 6646 486E and replace it with 0684 4E71 486E. When you hit the choose the locomotive screen, any
choice you make will be valid. I've since heard that the krak listed above allows the game to continue to limit your play t
two trains at a time. A bad krak in other words.

Protection Background

| sat down here a few hours ago with the intention of blasting a quick hole in the protection. It's now five in the morning
This is a questionable krak. The first anonymous attempt reportedly didn't work. I'm not sure if this second attempt (mine
will work either. Understanding why means taking a much closer look at the logic of the program.

Krak Procedure

The protection in Railroad Tycoon is not typical. The screen that comes up asking for you to identify the type of locomotive
is crucial to the operation of the protection. It's also very difficult to remove from the flow of execution - at least | haven'
been able to sidestep it. Your choice sets up certain values in certain global variables for the program to use later.

There are two separate response handling routines. One routine, called BCONTENT (accessed by a JSR CA(A5)), handles the
response if you click the mouse. This routines highlights the name choices of the locomotives as you click them. It will alsc
handle a click on the OK button. The other routine, called BKEY (accessed by JSR E2(A5)), handles keyboard input. | suppose
it's possible, though | haven't tried, to choose the locomotive name under the direction of the arrow keys. This seconc
routine also handles a return (hit OK).

This double routine thing had me confused for at least an hour because | would randomly (and unconsciously) choose the
OK button, sometimes with the mouse and sometimes with the keyboard. | kept setting breakpoints where | knew executior
would occur (I knew this because | had painstakingly traced through the whole code block, picking out good breakpoints)
but | had only done so for the mouse routine. | kept confusing myself by randomly selecting the OK button with the
keyboard (sometimes TMON would break in, sometimes it wouldn't, on a seemingly random basis)!

| began looking at the protection with the idea that the protection was a subroutine. It is not. The whole initialization of the
game is all in one routine, with the protection at the leading edge of the code segment. This pre-misconception (a
midnight) proved time consuming. (I'm telling you about all these traps | fell into so you can use the experience in you
kraks.) The fact that the protection is built into the main initializing code segment makes the whole approach to kraking i
much more involved. As | said above, | was looking for a "quickrak" [hmmm, a new word], but this just was not going to be
the case.

| stubbornly kept looking for a definitive krak point - one of those luscious, helpful, welcome conditional branches that
when satisfied, completely jumps around an undesirable bunch of code (the code bunch that says, "Nope. You're eithe
blind or a pirate with no manual, so you will have only two trains"). At about four o'clock, it finally dawned on me (pardor
the pun, the sun is just coming up now as | type this) that the protection was hard-wired into the logic of the program
When | say this, | mean that there is not any clear-cut result from your choice.

In particular, this protection scheme (as | said above, or at least think | said above) takes your choice and puts a bunch o
corresponding values into a bunch of global variables. Later on, the protection code then goes on and does a bunch of matl
operations on those values to come up with, not a condition, but data addresses and pointers for a dialog box.

The protection always draws a dialog box (regardless of whether or not you make the right choice). The only thing that i
different when you make the right choice is the contents of that dialog box, as computed from the numerical value:
assigned to your choice.

Are you confused? The protection is not saying yes and it's not saying no. It's using your choice to figure out what to say ir
its dialog box (the gray one that pops up right after you make your choice). Because figuring out all that crumby math logit
is way beyond my effort limits (especially for a game like this), the program always fills its dialog box with the message
corresponding to an incorrect choice. The protection always tells you that you will be limited to two trains and there i:
nothing | am going to do about it.

A bit farther down in the code from the _ModalDialog (the trap call which waits for you to acknowledge reading the dialoc
box's message with a return) is one of those luscious, helpful, welcome conditional branch statements I'm always lookinc
for. Need | say that | was very happy to see it?

I changed the BNE at "BSWITCH"+AC4 to an NOP. Here's where the ambiguity comes in. | think this modification forces the
program to always act as if you've made the correct choice for the locomotive's name. (If this modification does in fact dc
this, then it constitutes a "krak"! If it does not, well, then it's your turn to take a shot at this thing.) In more words, despite
the fact that the program's dialog box says you've made the wrong choice and will be limited to only two trains, this little
"krak" makes the program a liar. You should be able to play without any software protection limitations to the number o
trains.

To be honest, | do not have the patience right now to figure out the game, to play it, or to test the krak. I'm way too tired
Additionally, I feel fairly certain that | will not have the slightest interest in figuring out the game, to play it, to test the kral
tomorrow, or the next day, or even the next day. (I dunno. I'm hedonistic when it comes to computer games. People tell me
Robot Wars and SSI games are great. | tell them they're nuts - I'm action arcade all the way. Besides, nothing turns me of
faster to a game than a pathetically slow opening graphics presentation, and Railroad Tycoon definitely takes the cake (anc
whole damn cooking pan and spatula) when it comes to pathetically slow opening graphics presentations! Have you eve
seen anything slower?!?)

In all fairness (actually curiosity), | went back and looked through the game for the krak patch that Grimm posted. It's there
all right, but | believe it is in the wrong place. If you search for what he says, but search for it twice, the second occurrence
is remarkably close to where my krak patch is.

Krak Patch

Hex search for:

28 00 02 BO 69 06 84 66 08 08 AD

Hex change the bold values to 4E 71

This should appear on sector 301, byte 25848 of the file.
or

Find Hex string 0684 6646 486E

Replace it with 0684 4E71 486E

When you hit the choose the locomotive screen, any choice you make will be valid The krak listed above allows the game t«
continue to limit your play to two trains at a time.

Claris Resolve 1.0
Protection: Date Expiration
Supplied by: Zelig
Problem: Resolve will expire August 10, 1991 unless a valid serial number is entered.

Solution: | was having problems finding out where the check was taking place so | went the easy route and set a trap ir
MacsBug for an _ExitToShell (A9F4) and then back traced using "IL" to list the code before the _ExitToShell. And this is wha
was revealed:

PEA $FFFC ;486E FFFC
JSR Timebomb ;4EBA FCF6

Now, this is extremely suspicious. All you have to do is change the JSR Timebomb to NOPs and a branch right afterward:
that will make Resolve work forever.

Hex Changes:

Search : 486E FFFC 4EBA FCF6 4A00 588F 670E

Change : 4E71 4E71 600E

Shutdown Code

For you people with hard disks and are running MacBugs or apple debugger and when you crash and are not able to exit tc
shell (Finder) here is the code to type to unmounted all volume and then do a shutdown this will help to recover faster b
not having to rebuilding the desktop after your crash:

SM A78 3F3C 0002 A895 (THEN A RETURN)(YOU HAVE TO PUT THE SPACES IN)

G A78 (THEN ANOTHER RETURN) (YOU JUST DID A SHUTDOWN NOW)

Stufflt Lite 3.0

If you have a registerred copy of Stuffit Lite 3.0 and you want to change the registration info, change the serial number tha
is in the data fork of the Stuffit Lite 3.0 application at the offset 836 ($344) from the start of the data fork (which is at the
end). The registration name is in the middle of the data fork.

If your copy of Stuffit Lite 3.0 has been patched by the Stuffit Lite 3.0 crack program, you can change it back to normal by
changing CODE 13+$1208 from $4E71 to $6622. Unpatched Stuffit Lite programs won't have the same CODE 13 resource
(see next paragraph). | tried this patch before | got the Stuffit Lite 3.0 crack and found that it didn't enable encryption o
multiple open files so it was useless. | threw away the Stuffit Lite 3.0 crack because of this and it did the same thing
already tried.

Stuffit Lite 3.0 contains some compressed resources that include most CODE resources (including CODE 13) and some DITI
resources and probably others. (This is why trying to compress the file only gives about 3% saved.) This compressior
effectively scrambles them so they appear virtually meaningless. Stuffit uncompresses them when you run the program
The CODE 13 resource that was used in the patch was an expanded version of the CODE 13 resource in unpatchec
programs. The person who made the patch got the uncompressed resources from memory when the program was runninc
and worked with them. (I made an FKEY that will retrieve resources from memory). You can't patch your unpatched progran
without the expanded CODE resource or the crack program. Surprisingly, Stuffit doesn't care if it's resources are expande
even though they should be compressed.

Here are the serial numbers. They were created using numbers from 0 to 199.

(most should work):

L297000000 L347000001 L397000002 L447000003 L497000004 L547000005
L597000006 L647000007 L697000008 L747000009 L267000010 L317000011
L367000012 L417000013 L467000014 L517000015 L567000016 L617000017
L667000018 L717000019 L237000020 L287000021 L337000022 L387000023
L437000024 L487000025 L537000026 L587000027 L637000028 L687000029

L207000030 L257000031 L307000032 L357000033 L407000034 L457000035
L507000036 L557000037 L607000038 L657000039 L177000040 L227000041
L277000042 L327000043 L377000044 L427000045 L477000046 L527000047
L577000048 L627000049 L147000050 L197000051 L247000052 L297000053
L347000054 L397000055 L447000056 L497000057 L547000058 L597000059

Assembly for Cracking

by THE SHEPHERD

This document is a short tutorial designed to prepare the reader to use TMON and MacNosy to render protection schemes inoperative. It will not prepare the
reader to begin programming in assembly language, in fact, I am not a programmer myself. Hopefully this will allow someone with a minimum programming
background to learn how to quickly read assembly listings, and then quickly locate a give protection scheme. Actual cracking will not be covered in detail in
this document.

The following topics will be discussed in detail:
Number Systems and Memory
Basic Architecture and Addressing Schemes
Instruction operands and parameters
The Flags Register
The Stack
Traps
Assembly Mnemonics
How To: MacNosy
Example Code

How To: TMON 2.8.x

How to Crack Sorcerer: A Test Cruise.

THE BASICS

Number Systems

We will be dealing with three different number systems. The difference between the number systems is simply at which number one decides to carry into the
next column. In Decimal (the first system), we carry at the 10th number. That is, any given digit can only hold 10 values, namely, the numbers 0 - 9. Once we
get to the carry value, we carry a one into the next column and reset the previous column to zero which is precisely what happens when you go from 9 to 10 (or
99 to 100 in which you carry twice, etc).

The second number system is called binary. In this system, the carry value is 2. This means that a given digit (called a bit in binary) can hold 2 values: 0 and 1.
To add one to a number in binary, you use the same principle as in decimal, except that the carry is a different value. To add 1 to 8 in decimal, you just add 1
and there is no carry (because the ones column hasn't reached the carry value (10) yet). To add 1 to 9 in decimal, you have to carry the one to the next column
(because you have passed the carry value) and reset the ones column to 0. So, counting in binary looks like this:

0

1
10
11
100

101

110

111

1000
1001
1010
1011
1100
1101
1110
1111

Add one to zero: we haven't reached the carry value (2) yet.

Add one to one: now we have 2 so we have to carry one to the next column and reset the first column.

Add one to zero (in the first column) and you just get one.

Add one to the first column and you get 2 so carry 1 to the second column and zero the first column. Add the carried one from the first column to the
second column and you are adding 1 + 1 which is 2 - carry again. So, carry the one to the third column and zero the second column.

And so on...

And here we are at 15 decimal.

OK, we refer to binary because it is the native numbering system of the computer and also because in some of the instructions, the individual bits represent
different information. Unfortunately, binary is hell for us humans. That brings

us to the third major numbering which is hell for the computer AND hell for us! But both sides can deal so it's not too bad.

Hexadecimal is the third system and its carry value is, of all things, 16. Now, we don't have 15 digits so hexadecimal uses the letters A-F for its last values.
Here is how to count in hexadecimal;

Hex Decimal Binary
0 0 0

1 1 1

2 2 10

3 3 11

4 4 100

5 5 101

6 6 110

7 7 111

8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
10 16 10000

And so on. You may be wondering what the hell is so great about hex numbering. Well, it turns out that one hex digit can account for 4 binary digits (whereas
decimal cannot hold a whole number of binary digits). This makes it extremely easy to convert binary to hex and back. To convert to hex from binary, just
take the right-most 4 digits and convert it to its equivalent hex digit with the above table. Then do the same for the next 4 binary digits and keep going until
you are out of binary digits. For example: 1010111000110001101. Break it up as follows: 101 0111 0001 1000 1101 and convert each group of 4 into a hex
digit: 6 7 1 8 D so the hex number is 6718D. Easy right?

To go back to binary, take each individual hex digit and convert it to its equivalent binary code.

Signed Numbers and 2's Complement.

The basic binary system has no way of representing negative numbers. To accomodate this, we use what is called a sign bit. The sign bit is simply the leftmost
bit we a talking about (meaning that often we have a 32 bit piece of data, but only care about 8 or 16 of the bits - so the sign bit is the 8th or 16th bit
respectively), and is set to one for negative numbers. This means that if you want an 8 bit number to be negative, then it's eighth bit must be 1 (and 16th bit
must be one for 16 bit numbers, etc.).

Two's Complement is an operation (yes there is an assembly instruction to perform it) that converts a positive integer to its negative equivalent (e.g. 1 to -1, 5
to -5, etc). To perform it, simply invert every bit in the number, then add a binary 1 to it. Take the number 00000001 (the eight bit integer 1). To make this -1,
invert every bit (11111110) and add

binary 1 to it -> 11111111. This then is -1 (or FF hex) as an eight bit integer. What happens if we want to treat this as a 16 bit integer? Big trouble, because
now the sign bit is bit 16 and god only knows what is in bit 16. So, assembly has an instruction called Extend that extends a number out any number of binary
places to make sure that any bits to the left of the original number don't affect its value.

All of this is relatively unimportant, since the assembly program you are trying to crack has already taken care of all these details and I have yet to see this type
of information be critical to the cracking process. I simply wanted to get this out in the open so that you will have a better understanding of some of the
instructions that will come up in the assembly instruction listings.

Now let us start by talking about memory. You probably already know that there are two kinds: ROM - Read Only Memory - and RAM - Random Access
Memory. As crackers, we don't care about ROM since we can't change it. Memory is one of the two things that we can move information into and out of (the
other being CPU registers explained below). Each individual piece of memory has its own address which is simply one number from a sequential list of all
available memory (i.e. it starts at zero, and goes up to the end of memory). The address is the means of telling the processor which piece of memory we are
talking about. For example, if we want to execute a piece of code, we need to tell the processor the address of the memory that the code starts at.

Basic Architecture and Addressing Schemes
CPU Registers

The 680X0 processors contain 8 data registers and 8 address registers. You can think of a register as a variable if you like; basically it is a storage unit that can
hold up to 32 bits (binary digits) of information - or 4 bytes. Note that the programmer is not required to use all 32 bits; in fact most assembly operators can be
used on 8, 16 or all 32 of the bits.

The Data registers are labeled DO through D7 and are used to hold data that will be operated upon. For example, mathematical operators (e.g ADD,
SUBJtract] ,etc.) operate on data registers.

The Address registers are labeled A0Q through A7 and are used to hold memory addresses. This is how assembly language treats pointers. Pointers are simply a
tool for easily dealing with a particular section of memory. If an address register contains an address, then that register can be used to move things into and out
of the memory address that it contains (i.e. the memory that it points to).

It is important to remember that ANY register simply contains 32 bits of information. There is actually no difference between what is contained in a data
register and what is contained in an address register. In fact, information can be moved between the two directly. The reason we call D0-D7 data registers, is
because there are no commands to deal with their contents as addresses. And we call AO-A7 address registers because all the address commands apply to them.
Addressing Schemes:

The idea here is to understand some of the ways that information can be moved into and out of registers and memory itself. I will give some very short
programming examples to illustrate both the syntax and the use of a given scheme. I will be using the MOVE instruction which simply moves the first
argument into the second argument:

for example: MOVE 100,D1

moves the number 100 into the data register D1. You might be wondering whether 100 is binary, decimal, or hexidecimal. Well, right now we don't care, but
as a general rule, we will assume that a number is decimal, unless it is

prefixed by a dollar sign $. TMON and Nosy will be very explicit about telling you what type of number the command is using - but more on that when we
talk about TMON and Nosy.

BTW, this list is not the offical set of addressing schemes. I have grouped similar schemes into larger groups. For example, there is immediate addressing

which means that you are moving a value (not a memory address or register). I have grouped immediate addressing with direct addressing since it does the
same thing.

Direct Addressing: This is simply the moving of information directly into a register or memory address.

Examples: MOVE 100,D1 ;100 is in decimal
MOVE DI1,D2
MOVE DO0,100 ;A little different here: since 100 is the receiving address
(the second one) it will be treated as a memory address. So this instruction
moves the contents of DO into memory address 100.
MOVE $55,D5 ;$ indicates 55 is in hexadecimal
MOVE $97BA54,A1 ;moves the hex address 97BA54 into Al.

Remember here that the last two instructions are essentially the same. They both move some number into a register. However, the last instruction - since it
moves the number into an address register - is setting up a pointer and a whole host of new instructions become available to it that are not available to the D
registers.

Later we will note that there are several parameters that can be attached to the MOVE instruction (and many other instructions, for that matter). These will be
covered later. This section is simply to show you how various kinds of information is manipulated. Note that in Direct Addressing, you see exactly what it is
that is being moved: in the first example, you can see directly that the decimal number 100 is being moved into register D1. Any subsequent operations on D1
will involve the number 100.

Indirect Addressing: (extremely important)

This scheme involves moving some address into an address register and then operating not on the number in the address register, but rather on the address that
is contained in the address register.

Example: MOVE 100,(Al) ;moves the decimal number 100 into the address pointed to
(or contained in) by Al.

Re-examine the last example of Direct Addressing. The command moved the number $97BA54 into address register Al. Since it is an address register, we can
think of $97BAS54 as an address rather than just a number. It may well be just a number, but odds are it will eventually be used as an address. The instruction
above moves the decimal number 100 into the address $97BA54. It does not move the number 100 into address register Al. The parentheses mean that
whatever is in A1 is actually an address and that this memory address will now contain the number 100.

Example: MOVE (Al),$1000

This instruction looks at the contents of A1, treats the contents as a memory address, and gets whatever is contained in that address and moves into hex address
1000.

Example: MOVE (Al),(A2)

This instruction looks at the contents of A1, grabs the contents of the address it contains, and places this value into the address pointed to by A2.

Lets look at a simple program and examine the memory that it deals with:

MOVE 100,D0 ;move 100 into DO

MOVE $5000,A1;move address $5000 into A1
MOVE DO,(Al) ;move DO into address in Al
MOVE DO0,A1 ;move DO into register Al

Ok, let's analyze this sucker. First off, we move the decimal number 100 into data register DO. Any further references to DO will also be references to the
number 100. The second instruction moves the hexadecimal number 5000 into address register Al. Since we are dealing with an address register, we can think
of $5000 as the memory address $5000. The third instruction says to move the contents of DO (which is the number 100) into the address contained in Al
(which is the address $5000). So after this instruction, if you looked at memory address $5000, you would see the number 100. The last instruction serves to
illustrate the difference between direct and indirect addressing. This instruction move the contents of DO (still 100) directly into register Al (and not into
memory address $5000, as the previous instruction did). After this instruction, if you looked at the A1 register, you would see the number (or address since it is
an address register) 100. After this last instruction, if you repeated the third instruction, the number 100 would be moved into memory address 100 (since we
just changed the address contained in register A1).

Consider an assembly program that needs to fill a block of memory - let's say from address 100 to 200 - with the number 10. To do this with direct addressing
would require the following:

MOVE 10,D0 ;D0 now contains the fill number.
MOVE DO0,100 ;put the number 10 into address 100.
MOVE DO0,101

MOVE DO0,102

and 97 more move instructions to directly move the number 10 into the appropriate memory addresses. Now consider the same program using indirect
addressing (here I will use some psuedo-code to fill the loop structure):

MOVE 100,A0 ;put first address into AO.
While A0 not equal to 200 do the following:
MOVE 10,(A0)
Increment AQ to next address
End While Loop.

Note that this program is much simpler. Once the address register is set to the correct address, we can move the number 10 into this address then just increment
the value in AQ which effectively makes A0 point to the next address.

Note also that we could have MOVEd the number 10 into DO and then inside the loop MOVEd DO0,(A0) which would have had the same result but with one
more instruction.

Auto Increment Addressing:

This is not actually a distinct scheme, rather it is a slight modification of the indirect scheme. The idea is to automatically update a pointer simply by
referencing it. There are two flavors of this: auto pre-decrement, and auto post-increment. Pre-decrement first decrements the register in question, while post-
increment increments the register after the instruction is finished. It looks like this:

Now lets look at the previous program to fill a block of memory:

MOVE DO0,-(Al) ;decrement Al to the previous address and put the contents
of DO into this new address.

MOVE DO0,(A0)+;move DO into address pointed to by A0 and then increment
AO0 to point to the next address.

MOVE (A0)+,(Al)+ ;move the contents of memory pointed to by A0
into the memory address pointed to by Al and then increment both registers.

MOVE 100,A0

While A0 not equal to 200 do:

MOVE 10,(A0)+ ;fill the address and increment to next address.
end while loop.

In this program, we use the auto post-increment to automatically increment register A0 to the next address that we will be using. This type of program structure
is often used to move and compare passwords around in memory. Let's say the password is residing at memory address $A000 and that we need to move it to
address $B000 before we call a routine that checks to see if is the correct one. Here is a program we might use:

MOVE $A000,A0 ;put source address in A0.

MOVE $B000,A1 ;put destination into Al.

MOVE (AO0)+,(Al)+ ;move one piece of password to destination and
increment both pointers.

MOVE (AO)+,(Al)+ ;move next piece of password to destination.

The third line moves the first half of the information from $A000 to $B000. After both registers are incremented, the registers contain $A002 and $B002
respectively and are ready for the next piece of the password to be moved (assuming the password was 4 bytes long). Now why, you are asking, did the auto-
increment add two to the two addresses instead of just one? Well, check out the next section on data size parameters to find out.

This about wraps up addressing schemes and register introduction. Next I want to look at one instruction - MOVE - and consider all the parameters one might

use with it.

The first thing to consider is that there are several types of MOVE instruction. There is the basic MOVE that we have used up until now. This is used to move
data around.

MOVEA is used to move addresses. Example: MOVEA $5000,A0.
Yes - we should have been using this in the above examples when moving addresses into address registers, but I wanted to show addressing types, not

instruction types. The Move Address is used just like the Move command, but lets you know that it is an address that is being moved (which means
simply that the destination is an Address register).

MOVEQ

Example:

Move Quick: A shortcut instruction that moves an eight bit signed integer into a data register.

Two things to note: 1) a eight bit integer translates to -128 to +127 in decimal (the 8th bit is the sign so we only get to use 7 bits as actual data), and
2) all 32 bits of the destination register are affected. This means that even though only 8 bits are used to represent the integer, these four bits will be
sign extended into a 32 bit integer (remember - sign extension means that the sign of the number will be preserved as we use all 32 bits of the
register). Don't get too confused here. The MOVEQ instruction simply takes an 8 bit integer and turns it into a 32 bit integer before putting it into a
register. We could certainly think of the eight bit integer as unsigned (always positive) even though the instruction says that it is signed. Signing the
integer becomes important only when we remember that the sign (or 8th bit) will be extended across 32 bits - so if you use MOVEQ to put the
unsigned number 255 (11111111 binary) into DO, the instruction says OK, here is the signed eight bit number -1 (in binary, -1 and 255 are the same),
and it needs to be turned into a 32 bit signed number. Now we have problems with the 255 because -1 in 32 bits is 32 binary ones, but 255 in 32 bits
is still only 8 binary ones. This will make more sense when we look at data sizes.

This command is often used to load loop counters into D registers. A standard MOVE instruction could be used, but the MOVEQ is a shorter
command and therefore takes up less memory and fewer machine cycles.

MOVEQ $50,D1 ;treat this instruction as a normal direct address MOVE.

MOVEM Move Multiple: used to quickly move several registers to or from memory.

Example: MOVEM D4-D7/A0-A5,$5000.

Moves data registers D4,D5,D6 and D7, and address registers A0,A1,A2,A3,A4, and A5 into memory starting at $5000. This command is used
primarily at the start and end of subroutines to save the contents of registers. Note that by reversing the arguments (so that $5000 comes first), the
registers are restored to their original values which were saved in the above instruction.

There are a couple of other forms of the MOVE instruction, but they are rare and unimportant for cracking. If you see one, you should be able to figure out
what it is doing. Now, we look at modifying the operands of the MOVE instruction.

Up until now, we have worked under the assumption that registers (and memory) contain 32 bits of information. This is not quite true. First of all, a memory
address can hold 8 bits of information. Luckily, the Mac is smart enough to know that if we are moving a 32 bit register into memory, it needs to use 4
consecutive memory addresses. Secondly, we aren't limited to just 32 bit instructions. Consider:

MOVE.L

DO,(A0)

MOVE.W DO0,(A0)
MOVE.B D0,(A0)

These demonstrate the methods for referring to Long-words (all 32 bits), Words (16 bits) and Bytes (8 bits). The first instruction moves all 32 bits of DO into
the address pointed to by A0. Since the address in A0 can hold only 8 bits of information, the processor will put the remaining 24 bits of information into the
three address following AO. The second instruction says to move the low 16 bits (I'll illustrate low bits in a second) into the address pointed to by A0 and the
address following A0. The last instruction moves the low 8 bits of D0 into just the address pointed to by AO.

OK: here is what all that really means. Consider:

Instruction Memory Address Contents-> $5000 $5001 $5002 $5003
MOVE $5000,A0 7 7 7?
MOVE $12345678,D0 7 7 N 7?
MOVE.B DO0,(A0) $78 7 N 7?
MOVE.W DO0,(A0) $56 $78 72 7?
MOVE.L DO,(A0) $12 $34 $56 $78

Question marks indicate that the instruction did not affect that memory address. Note that 1) when the information to be moved is longer than § bits it is
automatically moved into successive memory addresses, and 2) the information is stored from most significant to least significant. The terms most and least
significant (or high and low) are used to designate the higher vs lower portions of the number. In the number $1FF hex, the most significant byte is 01 and the
least significant byte is FF. In the number $12345678, the MSB (most significant byte) is 12 and the LSB is 78. In that same number, the most significant
word (2 bytes) is 1234 and the least significant word is 5678. I will often make references to both most/least significant bytes and most/least significant bits.

One last thing before we move on is to note that when using the auto increment/decrment addressing modes, the amount of increment or decrement is
dependent upon the size of the data being moved (which makes sense). If you say MOVE.W DO0,(A0)+ then A0 will be incremented 2 bytes so that it then
points one address past the data just moved into it. Likewise, if the instruction was MOVE.L DO0,(A0)+, then A0 would be incremented by 4 bytes and would
again point one address past the data just moved.

Also, often the size identifier is left off the instruction (like in MOVE DO0,D2). When this is the case, it means the instruction is using a word size operand or
MOVE.W. If the instruction is referring to byte or long-word size operands, it will explicitly say so in the command - MOVE.B or MOVE.L.

Special Registers:

Program Counter, denoted PC. This register always points to the instruction to be executed. You won't usually care what is contained in the PC, but you will
want to do your assembly listings from wherever it currently is. TMON makes it very simple to start dis-assembling from the current PC so that you can see
on-screen the instructions that are going to be executed.

The Status Register: very important.

This guy is how the processor keeps track of what just happened. For example, anytime you compare two values, you need to know if they were equal, not
equal, one was bigger, etc. All this type of information is contained in the Status register. Basically, the status register is a 16 bit register in which certain bits
contain information that you will want to access. Don't worry about which bits mean what because assembly language has operators that refer to the bits with
nice, easy to remember mnemonics. Here are the bits that you will care about:

z the zero flag. This flag is set if the result of an operation is zero, or if two compared values are the same - it is cleared otherwise. For example,
ADD.B $FF,1 would result in the number $100. But since we specified a byte size operation, the byte result is 0 and the flag would be set.

C the carry flag. This contains the carry from an arithmetic operation. If you add two 8 bit (.B) numbers, the carry flag contains the 9th bit. Say you
add $FF and 1 again. The result is a byte valye of 0 with a carry into the next bit. This carry would show up in the ¢ flag. This bit also receives bits
that are shifted out of a number during shift or rotate instructions. (See commands list).

N the negative flag. Set if the high bit (meaning the 8th bit when using the .B specifier, the 16th bit for the .W, etc) of an operation gets set. Also gets
set if the result of an operation is negative.

A% the overflow flag. Set whenever an operation yields a result that cannot be properly represented. For example, when adding the bytes 7F and 01, the
result - 80 - cannot be represented in 8 bits. In eight bits, the eighth bit is the sign bit (telling whether the number is posative or negative). Note that
this only happens if you are adding bytes - if the command added words, then the result CAN be represented in 16 bits. This flag won't be used too
much.

X the extended flag. This is basically a copy of the carry bit, but not all operations affect it. The X flag is used to enable multi-precision instructions,
that is, instructions can be intermixed without always affecting the X flag (in this case , the multi-precision carry bit). Once again, not used to much.

This probably doesn't make too much sense. That's OK, because you will get the hang of it when we look at a batch of code listings. The only reason I am
listing them here is because TMON can display these flags and their current values. This allows you to predict where the program is going when it decides to
branch somewhere. These flags are used to control program flow and, as such, are the single most important element to cracking. This is how you tell a
program that the password you just typed was equal (and not unequal) to the password the program is looking for. We will look at the branch instructions later
on. These instructions almost all use the Status Register Flags.

The final special register is actually just the A7 address register. The reason it is special is because it is used as the stack pointer on the Mac. The Stack is
basically a chunk of memory that is used for special situations such as jumping to a subroutine and having to remember where the program jumped from so it
can return when the subroutine is finished. The stack is also an excellent way to pass values to a subroutine. This will be illustrated later. All you need to
understand is that the Stack is a piece of memory and can be manipulated as such. To refer to the stack, refer to the A7 register. Also, the stack moves
backwards as it is used. Therefore, when a program wants to put a number on the stack it uses the pre-decrement indirect addressing mode:
MOVE DO0,-(A7) ;puts the value in DO onto the stack and moves the stack
pointer back one address.
MOVE (A7)+,DO0;puts the value on the stack into DO and increments the
stack pointer to the next stack value.

And of course, to get the value back off the stack, you would use Post-Increment. These are not always used, but when they are used, it moves the stack
pointer to the next available piece of stack space. When we begin working with Traps, you get a good workout with the stack so don't worry if this doesn't
make complete (or any) sense yet.

Traps

Traps are a quick and easy method of accessing the 9 jillion built-in subroutines found in the Macintosh ROM. Traps do everything under the sun and are
probably the main reason that all the Mac programs look alike. When a program wants do anything from drawing text to bringing up dialog boxes to putting up
menus, traps are used. Why not just call the subroutines directly? Well, the problem is that every time Apple comes out with new system software, they
change the addresses of one or more of these subroutines that almost all programs need. This would create chaos for applications, so Apple uses the idea of a
trap table. The trap table is a means of associating the trap name (actually it's machine language code) with the proper address of the subroutine. So, no matter
what the system version (within reason), an application can use the trap table to correctly call the subroutine it wants. These traps are easy to spot: they all start
with an underscore and then the name of the trap, e.g. _GetNewDialog.

A quick note about traps and viruses / anti-virus programs. If you were ever wondering how a virus program works, consider that a virus needs to be able to
write portions of itself onto a disk. To do this, it needs to have access to an operating system that can do the actually writing. It could either pack an operating
system around with itself (unwieldy and difficult to change when apple modifies the system) or use the trap table to call the traps that write resources. Now, the
trap table can be patched by a program...i.e. a programmer can substitute his own subroutine into the trap table so that any program that calls the trap to do
something, actually calls the new subroutine. Knowing this, an application could be written that patches the trap table and monitors the activity of any trap that
writes resources. (I haven't de-compiled the newer virus programs, but I know that's how vaccine worked). The anti-viral program then just sits back and
intercepts any of these traps, takes a look to see just what it is that is being written and where. If it looks suspicious (like writing an nVIR resource to the
system!) then it lets you know. WDEF was a really great virus because the programmer figured a way to bypass this method. The first thing WDEF does is try
to determine exactly which system it is operating under, and, if it is one that it recognizes (the 6.0x series I believe) it will re-patch the trap table with the
original system values so that it can write to the disk without being monitored! The key is that this only works if WDEF knows the original values of the trap
table and, since they often change, this means that WDEF is only effective on certain system versions. (Note that if it cannot re-patch the trap table, it will
attempt to run and hope that there is no anti-virus program running).

Well, back to assembly. Almost every trap needs some parameters to operate. For example, GetNewDialog needs several parameters, including the ID # of the
dialog to load, and several other things; and it returns a pointer to the dialog. Here is where the stack becomes important. Most traps use the stack to pass
parameters and return values. Consider the following code (which will probably be incomprehensible)

CLR -(A7) ;put 0 (word length since there is no size specifier) on the
stack
MOVE $2FF,-(A7) ;Put $2FF (word size again) on the stack.

CLR.L -(A7) ;put a nil-pointer on stack
_StopAlert
MOVE (A7)+,D0

This little subprogram brings up an alert dialog. If we were to look in Inside Mac vol lunder StopAlert we would find that it requires 2 arguments and returns
one result. If we were programming, we would care what types of information these parameters are (integer, pointer, etc.) but since we are cracking, we can
assume that the program to be cracked has already figured all this out.

Anytime a trap returns a value the calling code must allocate space on the stack before it puts the parameters on the stack. That is precisely what the CLR
instruction does. (CLR or clear, puts zero into its operand so CLR.L. DO would put 32 zero bits in DO) This is a fast way to move the stack pointer back one
byte...we don't actually care what get puts on the stack (zero in this case) because the trap is going to replace that number with its return result. Since Inside
Mac says StopAlert returns an integer and that an integer is 2 bytes or 1 word, we first clear an integer's worth of space on the stack.

Next we start putting arguments on the stack in the same order as Inside Mac says. The first thing is the alertID which is an integer. This is simply the number
of the alert - i.e. the number you would see if you looked at the alerts in Resedit. So, this number ($2FF in my example) is moved onto the stack. The second
argument is filterproc and is a procpointer (nothing more than a pointer). This argument is used only if the built-in dialog handlers don't quite cut it for you're
application (maybe you have special command keys to watch for or something). If this is the case, you would pass a pointer to you're filtering procedure in this
argument. Since I don't care about this, I will pass a nil pointer (one that points to nothing - this is defined as $00000000 [a long word] in assembly).

Once I have put the proper information on the stack, I can call the trap. The final instruction moves the trap result from the stack into register D0O. At this point
I can test the result and branch accordingly.

Finally, let's take at the branching structures. Branching is how a program makes decisions based upon tested values. For example, you type in a password.
The program must compare what you typed in with what the true password is. Once it compares the two, it has to be able to go one place if you typed in the
correct value, and someplace else if you typed in the wrong password. There are several ways to compare values, and I will cover all of them in a listing of the
assembly commands. The most common is the CMP (compare) command. This compares its two operands, and sets the Z flag if the two are equal and clears
the Z flag if the the two are different. Don't worry if the Z-flag doesn't quite register - it was one of the bits of the status register and you won't care too much
about it...just note that the various branching instructions will be testing the status flags and jumping to a new chunk of the program accordingly. How about an
example?

MOVE.B 1,D0
MOVE.B2,D1

CMPB DO0,D1

BEQ Code Section 1
BNE Code Section 2

OK, first we move two numbers into DO and D1. The CMP instructiion compares the two values (actually it subtracts the second from the first - thus you can
test for more things than just the two being equal) and sets the status register accordingly. From this example, we can see the the two are not equal and so the
BEQ (branch if equal) will not be executed. However the BNE (branch if not equal) will be executed since the values are indeed not equal. The branch
instructions cause program execution to actually jump to a new spot in memory. From this example, you can see that what flags in the status register actually
get set is not of primary concern. All you have to know is that two values are being compared, and the program wants to know if they are equal - as opposed to
wanting to see which was bigger...consider:

MOVE.B 1,D0
MOVE.B2,D1

CMPB DO,DI

BGT Code Section 1
BLE Code section

Here, the program wants to know which value is bigger. In this example, if D1 is bigger than DO, the the BGT (branch if greater than) will execute. The BLE
(branch is less than or equal) will not execute. This is really easy to pick out in programs - as long as one of the various CMP instructions is used...note I say of
the various; remember that most commands have several modes: consider CMP (compare), CMPA (compare address), CMPI (compare immediate), CMPM
(compare memory). Once again, you don't care which of these is being used, you just care what the hell is being compared, and how they are being compared
(are they equal?, is one bigger?, etc)

Let me quickly mention that BEQ is not technically branch if equal (although functionally it certainly is). BEQ means branch if equal to zero (referring to the
Z bit in the status register) and BNE means branch if not equal to zero. This is not critical, but it will help you to correlate the zero bit in the status register with
the BEQ and BNE instructions.

OK, now let's take this one step further. You know that a program can use the CMP instruction to test two values and you know that something happens to the
status register - but you really don't care what - and you also know that you can jump to a new section of code based upon the result of the CMP. Consider for a
moment the fact that the branch instructions depend entirely upon a bit in the status register. By this I mean that BEQ only executes if the Z (zero) bit is set,
BCC (branch carry clear) only executes if the carry flag is clear, etc. From this it should be evident that ANY operation that changes the status register bits,
could potentially be a reference for a branch. Consider the seemingly harmless enough CLR instruction. It serves to put the value zero into its operand. But,
by its very definition, the CLR instruction sets the Z flag to 1 since it is setting something equal to zero. There are a slew of commands that set and clear the
various bits in the status register. Refer to the command listing to see which commands affect which status flags.

There are also several ways to change which section of code is currently executing. As you have seen, the branch instructions all cause the program to jump to
another piece of code. Similarly, the BRA (branch with no test of status flags), JMP (jump), BSR (branch to subroutine) and JSR (jump to subroutine) all cause
the program to jump to another location and begin executing. The BSR and JSR will cause the program to execute at its new loaction until an RTS (return from
subroutine) is encountered at which point the program jumps back to the instruction following the original JSR or BSR.

Finally, I want to quickly discuss two important instructions: PEA and LEA, which stand for Push effective address and Load effective address. Basically, LEA
takes the first argument, computes the address at which that argument resides, and puts that address into the second argument. PEA computes the address of
the argument and puts that address onto the stack. Many programs use PEA as a shortcut to putting trap arguments onto the stack. For example:

LEA varl,A0 ;put the address of variable 1 into A0
MOVEA.L A0,-(A7) ;put address on stack.

PEA varl ;put address of variablel on the stack.

These two code listings do essentially the same thing. The first computes the address where variable 1 resides in memory and places that address in AQ. At this
point, we could use A0 to move information into an out of the variable varl using indirect addressing (MOVE 1,(AO)). Then, the address in A0 is
placed on the stack. The last line directly moves the address of variable onto the stack accomplishing the same thing as the previous instructions.

A word about pointers and handles. You should be familiar with pointers by now. A pointer is simply an address which is used to access the memory that it
points to. A handle is nothing more than a pointer to a pointer. That is, a handle is an address that points to some piece of memory, just like a pointer. The
difference is that the memory the handle points to contains the address of yet another piece of memory. Many traps return handles to data rather than pointers.
The reason is so that if the Mac's memory manager needs to move memory around, pointers can be moved without loosing the handle to the pointer. This isn't
too important to cracking since, once again, the program knows how to handle its pointers. You will often find a section of code that looks like this:

_GetNewDialog ;this trap returns a handle (according to IM) to the dialog in
question.

MOVE.L (A7)+,A0;Move the handle from the stack into AQ.

MOVE.L (A0),A0 ;A0 now contains the pointer.

Basically, this turns a handle into a pointer. First, the handle is moved from the stack into AO. (Remember, traps pass return values via the stack). Next, using
indirect addressing, the handle is turned into a pointer. The last line first looks at the value in A0 and treats it as an address. Then it looks at the contents of this
address. This 32 bit value (which is actually the pointer that the handle points to) is then moved back into A0. Lets say A0 contains memory address 1000. At
memory address 1000 is the value 2000. Now, 2000 is where the data we care about is actually

located. So, we take the value in 1000 (which is 2000) and place that value back into AO. After this line, AO contains the value (or address) 2000 and so A0
points to the data in question. I illustrate this because it is an often used technique.

Following is a detailed description of all the 68000 instructions. Some day I will buy a book on 68030/68882 instructions and update this, but it should serve
for now.

COMMAND LISTING

ABCD

ADD

ADDA

ADDI

ADDQ

Add Binary Coded Decimal. Add two operands using BCD, result is in the second operand. Binary coded decimal is
basically hexidecimal without the letter codes for the numbers 10-15. Using this, we get the flexibility of hexidecimal
but the convience of decimal. I have yet to see this used. Flags affected:

N: Undefined.

V4 Cleared if the result is not zero, otherwise unchanged.
C Set by carry out of the most significant BCD digit.

X Same as C.

A% Undefined.

Add two operands, result in the second operand. Flags affected:

N Set if high-order bit of result was 1, otherwise cleared.
Z Set if result was zero, cleared otherwise.
C Set by the carry out of the most significant bit, cleared otherwise.
X Same as C.
\% Set if operation results in an overflow (see definition of this bit).

Add Address: add the contents of address registers, result in second operand. Flags affected: None
Add Immediate: Add a constant to an effective address, result in second operand. Flags affected:

Set if high bit of result is set.

Set result is zero.

Set on carry out of most significant bit.
Same as C.

Set on overflow.

<X AaONZ

Add Quick: Add a three bit value to the second argument, result in second argument. Flags affected:

N Set if high bit of result is set.
V4 Set if result is zero.

C Set of carry out of high bit.
X Same as C.

\% Set on overflow.
ADDX Add Extended: add two values but allowing for values that require more than 32 bits of information. Flags affected:

Set result was negative.

Cleared if result is not zero. Else unchanged.
Set on carry out of high bit.

Same as C.

Set on overflow.

<HXONZ

AND Performs bit-wise and upon the two operands with the result in the second operand. This means that the two values are
compared bit by bit. For every binary digit, if both operands contain a one, the result will contain a 1, otherwise the
result will contain a zero. For example, consider 101 AND 110. The result would be 100 (only the third bit is set in
both numbers. Flags affected:

N Set if high bit of result is set.
Z Set if result is zero, cleared otherwise.
C Always cleared.
v Always cleared.
ANDI And Immediate: Performs bitwise and with a constand and an operand, result in second operand. Flags affected: same

as AND instruction

ASL Arithmetic Shift Left: Performs a bitwise shift left. If there are two arguments, then the first determines how may
times to shift the bits to the left. The lowest bit is set to zero.

X Set according to the last bit shifted out of the operand (that is, the most significant bit before the
shift was executed.

N Set according to the most significant bit in the result.

Z Set if the result is equal to zero (all bits zeroed), cleared otherwise.

C Same as the X bit.

v Set if the most significant bit is changed at any time during the operation. (That is, if the ASL

involves shifting more than one time, then if during any of the shifts, the msb is changed, V is set). NOTE -
the msb does NOT mean the leftmost bit as I described way back when. It DOES mean the leftmost bit
within the range of the operation. In other words, if it is a byte level shift, then the 8th bit is the msb, if the
operation is at the word level, the the 16th bit is the msb, etc.

A quick note about bit operations is probably in order. Basically, any register contains 32 bits, each of which is either a one or a zero. Assembly language
contains several commands for directly manipulating the individual bits in a register - as opposed to manipulating the entire value contained in the register. For
example, consider the ASL above. Basically, this command moves each bit in the register in question over one slot. Now, knowing how binary numbers work,
you should be able to see that this operation serves to effectively multiply the value of the entire register by 2. Similarly, the ASR (shift right) will effectively
divide the value in the register by 2. There are also commands to set and clear individual bits, as well as test to see if individual bits are set. More on these

commands later in the listing...

ASR Arithmetic Shift Right: Performs a bitwise shift right. If there are two arguments, then the first determines how may
times to shift the bits to the right. The most significant bit is unchanged (and not zeroed as in the ASL); this is so that
the sign bit remains unchanged.

X Set according to the last bit shifted out of the operand (that is, the lowest bit before the shift was
executed.

N Set according to the most significant bit in the result.

Z Set if the result is equal to zero (all bits zeroed), cleared otherwise.

C Same as the X bit.

v Always cleared.

OK, next are the infamous branch instructions. Basically, all these operations will examine one or more of the flags and jump to a new section of code based
on the result. None of these affect the status flags. Since these are the instructions that usually need to be altered to crack a program, I will list the actual hex
codes associated with the instructions. This way you can go into Resedit and apply the patch. All the branches translate to 6X AA in hex where X is the status
flag to check, and AA is the address to branch to. To modify the type of branch, just change the X, e.g. to change BEQ (67 hex) into BNE (66 hex) just go into
Resedit, find the 67 in question, and replace it with 66. To change the address that the branch jumps to, you need to find the address you want the branch to
jump to. Then start counting instructon bytes starting with the byte immediately following the branch instruction. Call that byte zero and count upwards to the
spot to jump to. This number (the difference between the two addresses is the AA parameter. Note that you can start counting backwards also if you need to
branch backwards. More on all of this in the actual cracking manual. Here they are:

BCC
BCS
BEQ
BNE

BGE

BGT

BLE

BLT

BHI

Branch Carry Clear. Branch if the C flag is clear. 64 hex.

Branch Carry Set. Branch if the C flag is set. 65 hex.

Branch if Equal. Branch if the Z flag is set. 67 hex.

Branch if Not-Equal. Branch if the Z flag is clear. 66 hex.

Branch if Greater Than or Equal. Branch if the N and V flags are either both set or both cleared. Basically, when
dealing with these multi-flag branches (yes, there are several more coming up), look at the instruction that set the flags
(usually a CMP) and ask yourself whether the relationship between the 2nd and 1st operands (the order is critical!) is
true. So, for BGE, look at the CMP and say - is the 2nd operand greater than or equal to the first? If so, the branch
will go. Or you can just step through this stupid command with TMON and see whether or not it branches. 6C hex.

Branch if Greater Than. Branch if 1) N and V are set and Z is clear, or 2) N, V, and Z are all clear. Basically the same
as above but don't branch if the two are equal. 6E hex.

Branch if Less Than or Equal. Branch if 1) the Z bit is clear, 2) N is set and V is clear, or 3) N is clear and V is set. 6F
hex.

Branch if Less Than. Branch if 1) N is set and V is clear, or 2) N is clear and V is set. 6D hex.

Branch if Higher Than. Branch if C and Z are both clear. Treat this as the same as BGT. 62 hex.

BLS

BMI

BPL

BVC

BVS

BRA

BCHG

BCLR

BSET

BSR

BTST

CLR

Branch if Lower or Same. Branch if either C or Z are set. Treat this as BLE. 63 hex.

Branch Minus. Branch if the N bit is set. 6B hex.

Branch Plus. Branch if the N bit is clear. 6A hex.

Branch V Clear. Branch if V is clear. 68 hex.

Branch V Set. Branch if V is set. 69 hex.

Branch. Branch regardless of what the hell is in the flags. This one is important...Imagine a program checking for an
original disk, and then saying BEQ to the rest of the program. If Z is clear, the program continues and bombs. Now
imagine changing that BEQ to BRA. All of a sudden, the dumb thing jumps to itself correctly no matter what happens!
60 hex.

Bit test and Change. Inverts the nth bit (determined by the first operand) in the 2nd operand. Z is set according to the
state of the bit BEFORE the inversion (by this I mean that if the bit was 0, Z is set and vice versa). No other flags are
changed.

Bit test and Clear. Same as above but clears the nth bit instead of inverting it. Flags are set the same.

Bit test and Set. Same as BCLR but sets the nth bit instead of clearing it. Flags are set the same.

Branch to Subroutine. This instruction first places the instruction following the BSR onto the stack. Next, operation is
continued at the address specified by the BSR - called a subroutine. At the end of the subroutine will be a return
instruction - covered later - at which point the original address is popped off the stack and execution continues from the
instruction following the BSR. BSR is the same as JSR for all intents and purposes, except that BSR can first check
any of the status flags the same way that the branch instructions did.

Bit Test. Test the nth bit of an operand and set the Z flag accordingly.

Clear. Sets its operand to zero.

N Always cleared.
V4 Always set.

CMP Compare. Compares two values. Actually, this command sets the status flags as if the second operand were subtracted
from the first (but neither operand is actually changed). See the SUB command for more details.

N Set if the result is negative. Cleared otherwise.
V4 Set if the result is zero - or if the operands are equal. Cleared otherwise.
C Set if the result generates a borrow. Cleared otherwise.
v Set on overflow in the subtract. Cleared otherwise.
CMPA Compare Address. Same as above but this command will be used to compare address registers.
CMPI Compare Immediate. Same as CMP, but this command will be used if the first operand is an actual number (instead of

a register).

CMPM Compare Memory. Once again, same as CMP, but this command always uses post-increment addressing and compares
two memory addresses.

Decrement and Branch instructions

These commands make up part of assembly language's looping structures. Essentially, these commands decrement a loop counter (a specified data register)
and branch back to the start of the loop. There are two ways that the loop may be terminated. First, if the condition is met, the loop will end, and second, if the
loop counter reaches -1 then the loop will end. I am not going to list all the conditions for each command - for these, refer to the corresponding branch
instruction.

DBRA Decrement and Branch. No conditions are checked - terminate loop only when the loop counter reaches -1.
DBCC Decrement and Branch unless Carry Clear.

DBCS Decrement and Branch unless Carry Set.

DBEQ Decrement and Branch unless Zero.

DBNE Decrement and Branch unless Not Zero.

DBGE Decrement and Branch unless Greater Than or Equal.

DBGT Decrement and Branch unless Greater Than.

DBHI

DBLE

DBLS

DBLT

DBMI

DBPL

DBVC

DBVS

DIVS

DIVU

EOR

Decrement and Branch unless Higher Than.

Decrement and Branch unless Less Than or Equal.

Decrement and Branch unless Less Than or Same.

Decrement and Branch unless Less Than,

Decrement and Branch unless Minus.

Decrement and Branch unless Plus.

Decrement and Branch unless V Clear.

Decrement and Branch unless V Set.

Divide Signed. Divides a 32 bit quantity (second operand) by a 16 bit quantity (first operand). The low order word of
the 2nd operand gets the quotient and the upper word gets the remainder.

Set if quotient is negative cleared otherwise. Undefined if overflow.
Set if result is zero, cleared otherwise. Undefined if overflow.

Always cleared.
Set on overflow.

<AQONZ

Divide Unsigned. Treat this as identical to the above instruction except that the result is treated as an unsigned integer.
Flags are set the same.

Exclusive Or. Performs an exclusive or (which means that each bits are compared, if both are 1, the resultant bit is 0, if
one of the two is 1, the result is 1, and if both are 0, the result is 0) on two operands. The result is in the 2nd operand.
Example: EOR 1010,0011 (both binary) would yield 1001. This is not a valid instruction, but does show how
exclusive or works.

N Set if the most significant bit of the result is 1, cleared otherwise.
Z Set if the entire result is zero (all bits zero), cleared otherwise.
C Always cleared.
v Always cleared.

EORI

EXG

EXT

IMP

JSR

LEA

LINK

LSL

Exclusive Or Immediate. Same as above, but the first operand will be an actual number.
Exchange. Exchanges all 32 bits of any two registers. No flags are affected.

Extend. Extends the sign bit into either a word or long word data size.

N Set if result is negative, cleared otherwise.
Z Set if result is zero, cleared otherwise.

C Always cleared.

v Always cleared.

Jump. Transfers control to another section of code. The address supplied (using any of the addressing modes) is put
into the program counter and execution commences from that address. No flags are affected.

Jump Subroutine. Places the address of the next instruction on the stack, places the supplied address in the PC, and
commences execution at the supplied address. When the subroutine executes a return instruction (below) the address
on the stack is popped off and placed in the PC and execution commences at the address following the JSR. No flags
are affected.

Load Effective Address. Computes the address of the first operand and places that address in the 2nd operand. No
flags are affected.

Link. This command is a bitch to understand, but it is used a lot and is the method most compilers use to handle local
variables for subroutines. Basically, Link creates what is called a Stack Frame on the Stack. Link takes two operands,
an address register (A6 is almost always used), and the size of the stack frame to create. First, the address register is
pushed on the stack and the resulting stack pointer is placed in the address register making it a new temporary stack
pointer. Then the 2nd argument is added (note that this number is usually negative) to the original stack pointer. The
memory between the stack pointer and the address register is then treated as a buffer to contain any local variables the
subroutine may need. Don't worry to much about the dynamics of this command - just remember that usually, a
subroutine will start with a LINK command, and end with an Unlink command and then return to the calling procedure.

Logical Shift Left. Performs a bitwise left shift on the second operand (or the first if there is only one). The first
operand (if there are two) tells how many times to shift. The first bit is set to zero.

X Set according to the most significant bit before the shift is executed.

N Set a one is shifted into the most significant bit (indicating a negative result for signed numbers),
cleared otherwise.
Z Set if the entire result is zero, cleared otherwise.
C Same as X.
v Always cleared.
LSR Logical Shift Right. Same as above, but shifts right. The most significant bit is set to zero (meaning the sign is lost. If

this important, the program would use ASR instead).

Set according to the first bit before the shift was executed.
Always cleared (since zero is shifted into the sign bit).
Set if the result is zero, cleared otherwise.

Same as X.

Always cleared.

< AQONZ X

MOVE

MOVEA
MOVEM

MOVEQ

MULS

MULU

NBCD

NEG

Move. Moves the first operand into the second operand.

N Set if the most significant bit of the result is set, cleared otherwise.
Z Set if the result is zero, cleared otherwise.

v Always cleared.

C Always cleared.

Move Address. Same as Move except that address regesters are being used. No flags are affected.
Move Multiple. Moves the specified register(s) onto or out of the stack to facilitate temporary storing of the registers.

Move Quick. Moves an 8 bit signed integer into a register. The 8 bit integer is sign extended to 32 bits and then all 32
bits are placed into the destination register.

N Set if result is negative, cleared otherwise.
Z Set if result is zero, cleared otherwise.

C Always cleared.

v Always cleared.

Multiply Signed. Multiplys the first argument by the second with the result in the second operand.

N Set if the result is negative, cleared otherwise.
Z Set if the result is zero, cleared otherwise.

C Always cleared.

v Always cleared.

Multiply Signed. Same as above. I am not sure as to the exact difference between the two multiply command nor the
two divide commands. I wouldn't worry about it.

Negate Binary Coded Decimal. Converts a BCD number into its corresponding negative value, much the same as the
NEG instruction (below).

Negative. Performs two's complement on the supplied operand converting it to its negative counterpart.

X Cleared if the result is zero. Set otherwise.
N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.
\'% Set on overflow. cleared otherwise.
C Same as X.
NEGX Negative Extended. Same as NEG but used for multi-precision numbers.

Set on borrow. Cleared otherwise.

Set if result is negative. Cleared otherwise.
Cleared if result is not zero. Otherwise unchanged.
Set on overflow. Cleared otherwise.

Same as X.

Q<N Z X

NOP

NOT

OR

ORI

PEA

ROL

No Operation. A two byte instruction that does nothing. This is supposedly to allow programmers room for future
expansion or something, but I suspect it is to allow crackers to remove instructions without fouling up the program. No
flags are affected. The hex code is 4E71 and we will definately be using this to effectively remove offensive
instructions from applications - note that it is a 2 byte instruction, the same size as a branch instruction...

One's Complement. Inverts every bit in the operand.

Set if result is negative. Cleared otherwise.
Set if zero. Cleared otherwise.

Always cleared.

Always cleared.

a<NZ

Binary OR. Compares bits one at a time from the two operands. Result bit is one unless both bits are zero. Result bits
into second operand. Example: OR 0101,1100 yields 1101.

Set if most significant bit of the result is set, cleared otherwise.
Set if result is zero, cleared otherwise.

Always cleared.

Always cleared.

a<NZ

OR Immediate. Same as OR but used when the first operand is a numeric constant. Same flags set as OR.

Push Effective Address. Pushes the address of the supplied operand onto the stack using auto post-decrement. This
command is often used to pass pointers (VAR variables in Inside Mac) to traps and subroutines. No flags affected.

Rotate Left. Similar to the Left Shifts, except that not only is the leftmost bit shifted into the C flag, but it is also
rotated back into the first bit of the operand (instead of a zero being shifted there).

Set if one is rotated into the most significant bit, cleared otherwise.
Set if result is zero, cleared otherwise.

Set according to the last bit shifted out of the operand.

Always cleared.

<QNZ

ROR Rotate Right. Same as ROL, but shift to the right. The bit shifted out of the lowest position is placed into the C flag,
and also rotated back into the most significant bit.

N Set if one is rotated into the msb, cleared otherwise.
Z Set if the result is zero, cleared otherwise.
C Set according to the last bit shifted out of the operand.
v Always cleared.
ROXL Rotate Left with Extend. Same as ROL, but the bit that gets shifted into the C flag is also shifted into the X flag. Flags

identical to ROL except that the X flag will be the same as the C flag.

ROXR Rotate Right with Extend. Same as ROR, but the bit that gets shifted into the C flag is also shifted into the X flag.
flags identical to ROR except the the X flag will be the same as the C flag.

RTS Return from Subroutine. Places the long word from the top of the stack into the program counter and resumes
execution. This has the effect of returning execution at the end of a subroutine called with either BSR or JSR. No flags
are affected.

Set Instructions. This is a group of instructions that use the condition flags in an identical manner to the Branch instructions and therefore will not be listed out
in full detail. Essentially, if the condition that the command is testing (for example, not equal) then the operand's low byte is set to all ones (hex FF), otherwise
the byte is cleared to zero. Example:

SEQ DO This would set the low byte of DO to hex FF if the Z flag was set.

There are two special forms: SF will always clear the byte, and ST will always set the byte.

SUB Subtract. Subtracts the first operand from the second - result in the second operand.
X Set on borrow, cleared otherwise.
N Set if msb is one, cleared otherwise.
Z Set if result is zero, cleared otherwise.
A\ Set on overflow, cleared otherwise.
C Same as X.
SUBA Subtract Address. Same as SUB, but used for address registers. No flags are affected.
SUBI Subtract Immediate. Same as SUB, but used when the first operand is a numeric constant. Same flags set as SUB.
SUBQ Subtract Quick. Same as SUBI except that the constant is limited to 3 bits. Same flags as SUB.
SUBX Subtract Extended. Subtract for multi-precision numbers. Same flags set as SUB, except that Z will only be cleared by
a non-zero result - it will not be set by zero.
SWAP Swap. Swaps the words in a single operand. That is, bits 0-15 are swapped with bits 16-31.
N Set if bit 31 of result is set, cleared otherwise.

Z Set if entire result is zero, cleared otherwise.

v Always cleared.
C Always cleared.

TAS Test and Set. Tests a byte specified by the operand and sets the high order bit of that byte to 1. Apparently this is used
to prevent two processors from grabbing the same resource - but I have not seen it.

Set according to the high order bit of the specified byte before the TAS command is executed.
Set if the byte is zero before the TAS is executed.

Always cleared.

Always cleared.

a<NZ

TRAP

TRAPV

TST

UNLK

Trap. All traps will be presented in their Inside Macintosh equivalent so you should never see this command.
Trap on Overflow. IfV is clear, do nothing. If V is set, then the flags and the program counter are pushed on the stack,
and the a new program counter is loaded from absolute location 1C hex. I have seen this instruction, but have ignored.

Apparently some high-level languages use this to process overflow errors.

Test. Tests an operand for negative or zero values.

N Set if the msb is set, cleared otherwise.
Z Set if zero, cleared otherwise.

v Always cleared.

C Always cleared.

Unlink. Undoes a LINK command. The specified addres register is placed in the stack pointer (restoring it) and a long
word is popped off the stack and placed in the address register (restoring it). No flags are affected.

Using MacNosy

Before looking at an actual assembly program listing, we need to look at MacNosy. The version I am using is 2.95 so if you have an older version, bear with
me.

What the Hell is it??

MacNosy is an incredible dissassembler. Instead of simply converting all the hex information in a program straight into assembler syntax, Nosy analyzes the
program recursively, attempting to determine exactly where data is located, what types of information is being used and passed to and from procedures, etc.
Once Nosy has attacked a program, it expects you to give it some hints about what you think is going on, then Nosy examines it again and so on until you like
what you see. The two main types of information Nosy deals with are Code Blocks, and Data Blocks. Code blocks are what Nosy thinks can actually be
executed while data is simply referred to by the code - but never actually executed. Often Nosy will be tricked into thinking that a code block is a data block.
You will find out later how to show Nosy what is really going on.

Starting Out.

The first thing Nosy presents you with is an open dialog requesting the program to disassemble. All resource files will be available, but only something with
executable code would make sense to decompile - such as applications, DAs, Inits, Cdevs, etc. Once the file to decompile has been selected, Nosy asks if you
want to view the resources. Pressing y <Return> will list all resources and information pertaining to each. Pressing n <Return> or just <Return> will skip to
the next question. Next Nosy wants to know what type of resource to decompile. Press return to decompile CODE resources (for applications, and any inits,
cdevs, or DAs that use CODE resources). If CODE is not what you want, type in the resource type - INIT for inits, DRVR for DAs, and >cdev for Cdevs (the >
is necessary). Finally, a dialog will come up asking how you want to decompile. Just leave all options as is, and hit return. Nosy will go through what it terms
a TreeWalk which means that it will recursively analyze the program and generate it's decompiled code.

Working with Nosy.

Since I don't want to re-type the entire Nosy manual, I am going to list just the basics. There are some great features that I never use and don't even know how
to initiate without referring to the manual and these will be omitted. Everything I use to crack software will be covered in detail.

At this point, Nosy will present you with several windows: a Code Blks window, listing all procedures in the decompiled file; a Notes window which Nosy will
use to display information; and a Mystery window, listing things that Nosy had trouble with during decompilation. Nosy can also display a list of all Data
Blocks which are chunks of code that either did not make sense as executable code, or were referenced as data (Nosy looks for PEA and LEA to determine this
and looks for JMP, JSR, and BSR to find individual procedures). Notes cannot be closed, so ignore it, and Mystery has things that - to date at least - don't
matter that much to the cracker. When working with Nosy, you can at any time select the name of a code or data block and hit CMD-d to display it in a new
window. Before examining the menu commands, lets look at a basic Nosy listing and see what Nosy tells us.

This is the procedure called Eject from the file Font/DA Mover. This is the file I will describe in detail later.

BD4: QUAL Eject ; b# =79 s#l1 =proc4’
vbt 1 VEQU -64
param? VEQU 8
paraml VEQU 10
funRslt VEQU 14
BD4: VEND
;-refs - 2/CLOSEMYF
BD4: 4E56 FFCO 'NV. . Eject LINK A6, #-540
BD8: 41EE FFCO 200FFCO LEA vbt_l(A6),AO
BDC: 316E 0008 0016 2000008 MOVE param?2 (A6) , ioVRefNum (AQ)
BE2: 216E 000A 0012 200000A MOVE.L paraml (A6),ioNamePtr (AOQ)
BE8: A017 oLt _Eject ; (AO|IOPB:ParamBlockRec):DO\OSErr
BEA: 3D40 O0O0OOE 200000E MOVE DO, funRslt (A6)
BEE: 4ESE NN UNLK A6
BFO: 225F '"7' POP.L Al
BF2: 5CS8F A ADDQ.L #6,A7
BF4: 4ED1 'N.' JMP (A1)

OK, The first column contains the code resource-relative address of the instructions. To the right of this is the hex listing of the instruction,
followed by an ascii display, followed by the actual assembly instruction.

The first line tells you the following: The name of the procedure (either a meaningful name Nosy found somewhere, or a generic procN where
N tells where the procedure falls sequentially in the file), the block number (similar to proc number except this takes into account data blocks
as well as procedure blocks), the segment or CODE resource ID #, and the actual procedure number. So in the above example, we are looking
at Eject, it is the 79th block in the file (counting data blocks), it is in code resource ID 01, and it is the 47th procedure block in the file. So we
could open CODE 01 in Resedit, skip down to BD8 and see the hex codes that Nosy lists. Whe BD8 and not BD4 like it says above? Well, on
disk, a CODE resource has 4 header bytes (whose meaning escapes me at the moment) so we have to add 4 to the Nosy address to find the
correct Resedit address.

Below this information will be listed any local variables used (they will always contain an underscore) along with their relative offsets from the
procedure, then any parameters passed along with their offsets. If there is a result that will be passed back to the calling procedure, it will be
listed as funRslt (as it is here). Don't worry about all the offset information as Nosy will refer to parms and local variables by their symbolic
names. VEND denotes the end of the variable list. Next comes any references to this procedure - any procedures that call this procedure.
Finally comes the actual listing. Occasionally, Nosy will stick more than one procedure in a window. If this happens, each procedure will have
the above header. Nosy also might include data blocks in a procedure's window and it will have the word dataXX to the left of it.

Menu Commands

mEdit Display Reforma

New

Open... 30
Close #K
TR

Save As...

Hepgpr ¥

Booend in ot BB Maedst P
Beoend o, =
Bpip iy
Page 5etup [l
Print Window

Ouit Nosy #0
to TTY mode EY F

This is pretty straight forward and should require no explanation. Save As... will allow you to save as text a procedure or data window. This
way you can type in your own comments and save them. I never use this feature, however. TTY mode allows some of Nosy's extra features.
In previous version, TTY was the only mode and I imagine was hell to use. With the newer version, 2.0 or higher I believe, you can stay in the
window mode that you are currently in and never use TTY mode.

m Display Reforma

tngn s

I TE EHE

E i HiE
Facia i
Ehay

Select Al #A
Find 3#T
Change FE M
Goto Line 3
Grab Clip & Find 3g
Show Insert pt 31
insert pt toTop %t f
sel to Notes #n

OK, the first two sections are standard. Find will find the next occurence of whatever you have selected. For example, you can select a local
variable name and hit cmd-f to find the next time it occurs in the current window. If nothing is selected, Nosy presents a dialog allowing you to
enter a search string.

Change brings up a standard search/replace dialog - similar to Word.

Goto Line allows the user to goto a specified line number in the front window.

Grab Clip & Find operates like Find except that the clipboard is used as the search string.

Show Insert pt scrolls the window to display the cursor (if you had scrolled the cursor off the screen).
insert pt to Top places the cursor at the top of the screen (line 1).

sel to Notes copies the current selection into the Notes window.

Reformat M
Code|Data blk 3#d
Hefy ta HiH
gl chain

5Ys syms map
Trap refs map
Globals map —

Bsrc map —
S5trings |
r
Data Blks E
Case jumps ¥
Mystery procs ¥
ROM Patch Info ¥
Bad Blks ¥
Blk thl B |F
Code Blks #S |F
Code|Data blk displays the currently selected code or data block in a new window. For example if you select a procedure from the
code blocks window and hit cmd-d, the procedure will be displayed in a new window. If there is no current
selection then Nosy will request a proc name via a dialog.
Refs to Active only if a procedure name is selected. Displays all procedures that call the selected procedure. Using this,
you can see any part of the program that is calling a particular procedure.
Call chain Similar to Refs to. Any procedure that calls the selected procedure is also treated with Refs to. For example, you

select a procedure called proc5. Doing a Refs to shows all procs that call proc5 - let us say for example, prol0 and
proc 15. If you had selected proc5 and done a Call chain instead of Refs to, then first proc10 would be displayed
along with any proc that called and so on backwards until the chain ends. Then procl5 would be listed along with
any procs that call it, and so on until the chain ends. This is an excellent way of tracing a procedure that draws an
error dialog back to the procedure that actually generated the error.

Sys syms map Displays all system global variables along with any procedures that reference them. An example might be the
system global MemErr which contains any OS errors. Nosy would display any procedures that reference MemErr -
note that this command displays ALL system globals and their referencing procedures.

Trap refs map This is a beauty. This will list all traps called by the program and the procedures that call them. If a program is
asking for a key disk, use this command to search for procedures that call either ModalDialog or one of the Alert
traps.

Globals map Displays all program global variables and the procedures that use them.

Rsrc map Lists all program resources, their lengths, and names if any.

Strings Lists all strings and the procedures that reference them. I am not sure what Nosy defines as a string, but try it on
Font/DA Mover to see.

Data Blks Displays a window listing all data blocks.

Case jumps Displays any procs containing a structure that resembles a case statement.

Mystery procs Opens the Mystery Procs window showing any procedures that Nosy was unsure how to handle.

ROM Patch Info Unknown. My outdated docs don't even mention this command.

Bad Blks Displays information about any blocks that Nosy thought were code but contained illegal instructions so Nosy
converted them to data blocks. Encrypted code would fit into this category.

Blk tbl Displays the following for all blocks: name, segment number (resource ID #), start address, and length.

Code Blks Displays the Code Blks window listing all code blocks.

Reformat Qyglkis
Review...

Link Jmp to Thl
Lodne in data
Pn o wE L
GRE Y EnE

|
Explore SELLII];

Review... Lets you review data blocks, optionally converting them to code blocks. More on this later.

Link Jmp to Tbl Defines the link between a mystery jump and and a data block. To use it, select the address of a mystery JMP and
choose the command. More on Jump Tables later.

Code to Data Converts a selected code block to a data block. The blocks name won't change until the next Explore (see below).

Is Proc Converts a selected data block to a code block. The block's name won't change until the next Explore.

JSR is JMP Tells Nosy that a JSR is really a JMP. Sometimes a JSR is followed by data - which will look like jiberish code.

The called procedure then pops the return address off the stack and uses that address as a pointer to a data block with
no intention of returning to the calling procedure. To use this command, select the destination of the JSR (e.g. for
JSR proc100, select proc100) and choose this command.

Explore Initiates a TreeWalk. This allows Nosy to re-examine the program using any changes you might have made (i.e.
converting data blocks to code blocks, etc).

Search_Rsrc Table:!

Patrant {ommeniy s
Hppand 4,8
srapvie f Hange

Hedy g g pag
Convert to .asm fmt

wiie g-%
EH

save .snt, reRead .aci

v dJournal commands
Proc rel addresses
format Maps by Addr
cmds to Notes Wind

| Set Source Path
Extract Map Names

Extract Comments
Append to .aci
name cHange

Addr to File pos

Convert to .asm fmt

save .snt, reRead .aci

Journal commands
Proc rel addresses

format Maps by Addr

Extracts comments from the selection (usually an entire procedure window) into a window entitled Comments. See
section on commenting below.

Appends selected comments (created using the above) to an aci (additional comment information) file. Later, this
file can be re-merged into the dissassembly.

Changes the selected name to whatever you type in. Use this to rename procedures from the generic procN to a
name that tells you what the procedure basically does. The change will be immediate and global.

Converts a selected address (the leftmost information for a procedure display) into file-relative information,
displaying a file-relative offset (in hex), block or sector number, and the block offset to the start of the address. This
might be handy if you were using a file editor (instead of Resedit which allows you to simply open the proper code
resource) to edit the file.

Converts the current procedure window to asm format by removing the addresses and hex and ascii data. Cannot be
undone - you must close the window, not save changes, and re-open it.

Saves a .snt file for the dissassembled program and re-reads the comment file if it exists. .snt files (saved Nosy
tables) are a means of saving your dissassembly mid-session. All changes are remembered so when you re-open the
file later, you begin right where you left off instead of doing a TreeWalk all over again, etc.

A checkmark next to this indicates that all your commands are being saved to a text file. The file will not actually
be saved unless you specify so when you Quit - see quitting later.

When checked displays the address of each instruction as procedure relative (starting at zero for each procedure
instead of starting at zero for each code resource).

When checked, Nosy will change the way it displays its various maps, i.e. Sys syms, Trap refs, etc. under the
Display menu. Instead of proc names, Nosy will display the segment number, and the segment offset. But - if Proc
rel addresses is also checked, then Nosy will replace the

proc names with a proc name followed by a + followed by the procedure relative offset. Try it out if this doesn't make sense.

cmds to Notes Wind
Set Source Path
Extract Map Names

Not yet implementated - like a lot of great features (see below).
Not in my manual - you're on your own.
Not in my manual - on you're own again. This doesn't seem to do anything, though, when I try it.

Unfortunately, the Search Rsrc menu is totally disabled. Maybe the next version...

Windows

10:30:

Fields of
0% Traps
TB Traps
5ys Syms
5ys Errs
Constants
Ascil
Calculate

Record/ALL names

Convert Hed to Dec 38-
add/ZAP Type Defs

#

#]

|

Record/ALL names
Fields of

OS Traps
TB Traps
Sys Syms
Sys Errs

Constants

Ascii
Calculate

Convert Hex to Dec
add/ZAP Type /Defs

Lists all Macintosh data structures that Nosy currently knows.

Depends on the selection: 1) a datatype (e.g. Dialog Record - or anything listed by the previous command) -
describes all fields for the datatype. 2) datatype@address - displays the current values for the datatype if one exists
at the specified address. 3) @address - displays hex/ascii dump at specified address.

Lists all known Operating System Traps and their parameters.

Lists all known ToolBox traps and their parameters.

Lists all known System Symbols.

Lists all known System Errors and their codes.

Lists all known Macintosh Constants. Note that my copy of Nosy contains an error in this window - it specifies that
constants in brackets can be selected and viewed by pressing cmd-?. Use cmd-<space> (or select Fields of from the
Tables menu).

Decimal/Hex/Ascii lookup table.

Evaluates selected expressions which can contain mathematical operators, system globals, program globals, IM
datatypes, registers etc. Use # to force decimal (#10) and $ for hex ($10).

Converts a selected number to decimal, ascii, and system symbol equivalent if there is one.

No idea.

Note on commands requiring a selection (Calculate, etc.) You may have noticed that often there is no place to enter the text you want to select.
In cases like these, type your text into the Notes window, select it, and choose the command you wish.

Reviewing Data Blocks

This is the process by which you tell Nosy that it has mistakenly made a piece of code a data block. Once you initiate the Review... command,
Nosy will show you each data block in sequence and give you a chance to work on it. Note that you may never need to do this to crack a

program - god knows I never use it unless I am really having problems. This section is to provide you with some idea of what Nosy can do.

Here is a typical display after selecting Review... from the Reformat menu. The Data Blk window displays the data block, the window directly
underneath this will display the section of code that references that data block (if their is one) and the Cmd window awaits your input. There

are about a zillion things you can do, but the most important one is the ¢ command.

Cmd:

“Hex|Dec|Asc | Zeror<B|W|Ln_item, Hsztr, Str, WZSTR, Z=t+, Jumpcz, JUMPF, BRA<L|C:

Undo, Code,

Ouit, MHewiByt} chnt, <MewLast|HUntil:r4{hhh}, Hewlstir, Mew* K cOmbine

Mhame=fmtl, fmt2., =mac_name, <H|D|A:<Fld>cnt, ADDR, LADR<C|P:, DRUHD=pfx

-Data Blk-

202
212
222
232
242
252

MU AL .Br. L J=
k.in....B...Eh
E...p.. f.=h.

0... =.X.h.Mg.
DT IR T -

‘=h.M..N* _TON."

dataii

oCc.
oCc.
oCc.
oCc.
oCc.
oCc.

LI I E

$4ESE , $FF26, $4 1EE, $FF26, $426E, ¥R, $4A72, $3F6
$6E1E,$316E,5,$16,$42A5, $12, $4265,$1A

$42A%, $1C, $7007, $AZ60, $6606 , 3062, $20,8
$30ZE,5, $2078, 358, $B06%, $4E, $6703, $2050

$2208 $66F4, $6010, $2050, 2208, $6604 , 2078, 258
$3068 , $4E, A, $4ESE , $205F , $544F , $4EDD

If your press ¢ and return, Nosy shows you what the data block looks like in assembly:

Cmd:|i
Unde, I=s_proc, Ouit, Revert_to_data, Mew. .. cr for next
-Data Blk-
I
a02: 4ES6 FFE6 ‘MU' dataili L I HE ARG, #-%7A
a05: 41EE FFE6 'A..."' LEA —122(AG >, AD
S0A: 4Z6E O0O0A 'Bri. .’ CLF 10CAG 2
S0E: 4ATE O03F6 $3FG5 TET F=FcbLen
312: BEIE 1000532 EMI .5 lah_1
S14: 3F16E 0002 Q016 “1n. .. .° MOLE BCAG D, i olRe fHumCAD
S1A: 4ZA8 0012 '‘B..." CLR.L i oMameP L (A0
S1E: 4268 001A 'Bh. .’ CLF i olD [ndesx (A0 3
922: 4ZA8 001C '‘B..." CLR.L i olOProc | OCAD
26 7007 P MOUED #7,00 ;Trap = GetHdlnfo
928 RAZEO Lo _HFsOispatch ,HFS ; <AO| 10PE:LOPERe: »: DOYOSErs
22A: BEOG 1000332 EME .S lah-1
22C: 3062 00z2a Qoo ‘=hH., . .f MOLE i olOURe fHum CAD >, 2 CAG 2
232 302E 0002 ‘0., lah MOLE 2CAG X, 00

Notice that this looks like pretty good code! Also note that Nosy has placed i in the Cmd window anticipating that you will want to change this
to code. Here are all the commands available:

H

“wENP O

WZSTR

JUMPP
BRAL

takes 2 parameters: 1) either L,W, or B for Longword, Word, or Byte and 2) the number of entries per line. Formats the block as
Hex bytes. Example: HL2 would format the block as hex longwords, 2 per line.

same as H (above) but formats block as decimal entries.

same as H (above) but formats the block as ascii entries.

same as H (above) but formats the block as zero entries.

Formats the block as a word-aligned Pascal string.

Formats the block as a Pascal string.

Formats the block as a word-aligned zero-terminated string.

Formats the block as a zero-terminated string.

Formats the block as a set of Jump Table entries - each word is taken as an offset from the beginning of the data block to a
common procedure and these jumped to spots are marked as common blocks (a common block - denoted com nn - is any
procedure executed via JMP instead of JSR or BSR). If you do this, you need to use the Link Jmp to Tbl command to link the
jump table to its jump command. See Jump Tables below.

Same as J except that the entry points are marked as procedures instead of common blocks.

Formats the block as code. Any instructions that are BRAnched to are marked with local markers (as in a standard Nosy listing).

NW

N *

(0]

ADDR
LADRC
LADRP
<Return>

Same as above except that instructions reached via BRA are marked as common blocks.

Undoes any formatting changes.

Changes the block to a code listing and brings up the code menu - discussed below.

Exits Review mode.

takes an integer parameter X. Splits the block into two blocks, the first block getting X words (remember a word is two bytes).
same as above except the parameter specifies bytes instead of words.

same as above except the parameter is a segment-relative address specifying the end of the the first block.

takes an optional search string as parameter. Splits the block with the first block ending upon finding the search string. If no
string is supplied, Nosy searches for a logical procedure end (RTS, JMP(AX)). The block is formatted as code and the code
menu is displayed.

Splits the block in two, the first block being made a word-aligned Pascal string.

Splits the block in two. Uses the first longword to determine the length of the first block.

If the previous block is a data block, then combine it with the current one.

Formats the block as a list of word-length procedure block addresses.

Formats the block as a list of longword-length common block addresses.

Formats the block as a list of longword-length procedure block addresses.

Saves changes, and takes you to the next block.

The Code Menu Commands: these come up if you use ¢ or nu to change the block to a code listing.

ZROo—C

<Return>

Undo any changes to size or format and takes you back to the Review menu.
Tells Nosy to keep the block as code and return to the Review menu.

Exits Review mode.

Changes block back to data, but retains any size changes you may have made.
Same as the N commands above.

Same as above - returns to the Review menu.

Once you have finished Reviewing data blocks, you must select Explore from the Reformat menu to have Nosy incorporate any changes into

its lists.

Working with Jump Tables

A jump table is a means of efficiently transferring control to a procedure. An example of a jump table would be a program that receives an
event (as most mac programs do) and then has to execute a procedure depending on what the event was. Font/DA Mover has an extermely
simple jump table - actually it is not a true jump table - in which the button the user clicks is returned to its main event loop as an integer. The
program then repeatedly subtracts one from the integer and branches to an appropriate procedure when the integer has been reduced to zero. A
more common (and true) jump table consists of a list of offsets. The program then takes an integer which tells it which entry in the table to use,
multiplies it by 2 (assuming each entry is two bytes in length) and then indirectly jumps to the correct procedure. Here is an example taken
from the Nosy manual (this is from the System File's .MPP driver):

LEA data4, A3
ADDA D3,A3
ADDA D3,A3
MOVEA (A3),A3
PEA .MPP
ADDA.L (A7)+,A3
JMP (A3)
datad DC.W $82,%$280,%26C,$3C, etc

As gross as this looks, lets see what it is doing. At the start, D3 contains the selector that determines which entry in the table to use. A3 is
loaded with the address of the jump table. D3 is added to it twice (we could have doubled D3, then added it) so that now A3 contains the
address of the proper jump table entry. The instruction MOVEA (A3),A3 grabs the jump table entry (which is simply an offset from the start
of the program to the correct procedure) and puts that entry back into A3. Next the address of the program start ((MPP) is pushed on the stack,
and this value is added to A3 to produce the actual address of the procedure (the address is the start of the program plus the offset). Now A3 is
setup, so the program Jumps to the address in A3. If you don't mind looking at this type of listing (and I don't since it probably is not the copy
protection - although it might be jumping to the copy protection) then you need go no farther. But Nosy can set this up to look much nicer.

To fix this up, select the address (the far left column) of the Jump instruction - in this case, the JMP (A3). Now choose Link Jmp to Tbl from
the Reformat menu and a dialog box appears requesting the name of the jump table's block - in our case that would be data4. Click continue
and a new dialog appears. The first thing we need is the table format. There are three choices: JUMPP - tells nosy to label the jumped to
procedures as procedure blocks; JUMPC - tells Nosy to label the jumped to procedures as common blocs; JUMPL - tells Nosy to label the
jumped to procedures with local labels in the same block as the jump table. To figure out which one to use (and it is really a matter of
preference), decide if you want to break the whole thing up into many procedures, or keep it as one large procedure with tons of local labels. If
the procedure is a massive one, you may want to break it up (and I would recommend JUMPP - but then, I like proc labels better than com
labels), otherwise, use JUMPL.

Next we need the number of jumps. Just count the number of entries - but be careful: you need to decide the size of each entry in the table.
Note the DC.W next to data4. This means that Nosy is showing you individual words so you can just count the number of entries. But if Nosy
is using DC.B, then it is showing you bytes, so you would have half as many word length entries.

Finally, we need the Table Bias. Bias is a parameter that Nosy uses to determine the actual procedure address of a non-standard jump table. To
calculate this, use this formula: Bias = Address of JumpTable + Offset - TargetAddress. The tricky thing is to deterine the TargetAddress. In
the above example, it is easy, since the code clearly refers to the start of itself (it refers to the address of .MPP). JumpTable is the address
(leftmost column in the listing) of the start of the jump table, and Offset is the first word-length offset in the table. Note that your calculations
will result in a hex bias - Nosy needs you to change it to decimal.

Click Accept, do another Explore, and that is it! Now the listing looks like:

JMP (A3)
JBIAS 92

data4 JUMP pProchA
JUMP procB
JUMP procC
etc.

Notice that Nosy uses JUMP to distinguish it from the instruction JMP. Once this is set up, it is a cinch to see where the jump table is jumping
- provided you can deduce the selector. Most of the time Nosy works wonders with jump tables, and the few times it has problems (it will list
these problems in the Mystery window) I have found it not worth the work to convert them to the above format.

Commenting Your Listings

There are a couple of cool features that I am not going to explain regarding commenting simply because I have never used them and the manual
I have isn't the most verbose. Basically, you can put comments on any line that Nosy hasn't already commented. All comments must start with
a semi-colon. Once you have all the comments you want, do a cmd-a to select all, and choose Extract Comments from the Misc menu. Nosy
will extract all your comments into a comments window. Now hit cmd-a again, and choose Append to .aci from the Misc menu. This will save
your comments. Now close the procedure window and don't save changes. Select Save .snt, reRead .aci from the Misc menu. Nosy may ask
you if you want to delete something or other which it claims saves space in the Debugger. Since we are not using the Debugger, choose No.
Now when you open the procedure again, you comments appear.

There is one feature I will attempt to explain, because it could be a serious boon. There a several slash (/) commands Nosy understands. One
in particular, /w, works like this: Anytime a register is setup to contain a pointer to a Mac structure, you can have Nosy automatically show the
structure whenever the register is referenced. Here is an example:

PEA data24 ; len = 206
_OpenbPort ; (port:GrafPtr)

LEA data24,A2 ; len = 206

MOVE #4,68 (A2)

MOVE #9,74 (A2)

Note in the 3rd line that A2 is given the GrafPtr. Since GrafPtr is a pointer to a valid Mac structure (GrafPort), we could use the /w command
as follows: click at the end of the 3rd line and hit return (so we are not commenting on a line that Nosy has already commented). Enter
/w<space>GrafPort. Now save the comments as illustrated above. When the proc is re-opened it shows the following:

PEA data24 ; len = 20606
_OpenPort ; (port:GrafPtr)
LEA data24,A2

/w GrafPort

MOVE #4, txFont (A2)
MOVE #9, txSize (A2)

Using this technique, Nosy will use the fields of the structure instead of the actual offsets from the register. This will work for any valid Mac
structure. I haven't used this feature (I just noticed it when compiling this manual) so that is all I will say - feel free to experiment.

Well, I guess the next thing to do is start looking at some serius code listings pulled directly from Nosy (and not stuff I made up on the fly).
Nosy has shorthand notations for certain operations, most commonly for stack operations. The two to watch out for are PUSH and POP (btw,
TMON does not use this notation, but rather uses the standard notation found in any assembly book). PUSH is the equivalent of putting the
operand onto the stack using auto pre-decrement. POP is the same as grabbing the operand off the stack using auto post-increment.

Let's take a look at some code listings from Font/DA Mover 3.8. I selected this program so that you can pull up the same listings that I will
refer to in Nosy. First take a look at the initial procedure: DA Mover. There will always be a procedure whose name is the same as the
program you are de-compiling. This procedure (DA Mover in this case) is the first procedure the program executes when launched.

430: QUAL DA Mover ; b# =12 s#1 =proc4

OK, I will stick my notes right in the listing (below or to the right of what I am refering to), so bear with me. Note the first line (above). We
are looking at block 12, segment (or CODE resource #) 1, and it is the 4th procedure in the program.
The first few lines will do some startup stuff that I do not fully understand and so I will skip it.

430: 4EBA 0C48 1001072 DA Mover JSR proc70 Proc 70 is just an RTS

434: 4E56 0000 'NV. LT LINK A6, #0

438: 2C5F Y, POP.L A6

43A: 4EBA 0C40 100107C JSR proc71l Proc 71 calls RTINIT which seems to be a common

step for MPW compiled programs. It then initializes

some global variables. Let's skip all this.
43E: 486D 024A 3000000 PEA proc232 (AD)

442: A9F1 oL _UnLoadSeg ; (Proc:ProcPtr) Here we are dumping an un-needed
procedure.

Now, looking at the listing from here, notice the procedures that get called - two without labels, then SetUp, MakeAWin and FinderSE and
finally MainEven which sounds suspicially like an event loop. Let's check out these procedures.

444: 4EBA 05E2 1000A28 JSR proc28 If you look at this procedure, you see several
references to memory stuff like ApplHeap, ApplZone,
Rom85, etc. Looks like this is checking for enough
memory or something. Not too interesting.

448: 4EBA 021E 1000668 JSR proclO This proc looks to be changing a few traps. Note that
it allocates a new pointer (NewPtr trap) and then calls
GetTrapAddress, and then SetTrapAddress.

44C:
450:
454
458:
45C:
45E:
462 :
464 :
468:
46C:
470 :
474
478 :
47C:

47E :

48A:

4EAD
4EAD
4EBA
4AAD
6706
4EBA
6008
3F3C
4EAD
4EBA
4EAD
4EBA
4EBA
4E75

4E5E

01F2
01FA
FCC2
F4FO0

FBAO

0031
01ca
FF86
01D2
0c2a
0czc

4E75 C64F

Here is the SetUp Procedure:

5092:

5092:

5092:
5096:
509A:
509C:

509E:
50A2:
50Rn4:
50A6:
50A8:

4E56
48E7
7E01
6006

4EAD
5247
700F
B047
6CF4

FEEG6
0118

00D2

2005092
2005852
1000118

-$B10
1000464
1000000
100046C
I lae 1
200023C
10003F4 lae 2
20002B2 B
10010A0
1001046
lNul

4E54 data9

datal0

vho 1

;-refs -

'NV..' SETUP
'H...'

A} A}

~

2005074

1000AB0 lho 1
'RG'

p.! lho 2
A} .Gl

200509E

JSR
JSR
JSR
TST.L
BEQ.S
JSR
BRA.S
PUSH
JSR
JSR
JSR
JSR
JSR
RTS

DNAME

DC.W

QUAL

VEQU
VEND

SETUP (AD)
MAKEAWIN (A5)
FINDERSE
glob26 (A5)
lae 1
MAINEVEN
lae 2

#49

DOALERT (AD5)
DOCLEANU
MYEXITTO (A5)
$INITHEA
proc73

FONT DA , 4

0

Take a look at this listing below the current one:
Draw the main dialog.

Checks if user launched a suitcase and if so, opens it.
Verify the main memory handle.

Branch if it is empty.

Do the actual program until user Quits.

Exit without error.

Out of Memory Error.

Do an Out of Memory alert

From here, the program exits.

SETUP ; b# =467 s#2 =procl99

-12

1/DA Mover

LINK
MOVEM. L
MOVEQ
BRA.S

JSR
ADDQ
MOVEQ
CMP.W
BGE

Only one local variable, no parameters.

Only called via DA Mover.

A6, #-$11A Setup a Stack frame for local variables
D7/A3-A4,- (A7) Save D7,A3 and A4 on stack

#1,D7 Loop coming up, this inits the loop counter.
lho 2 And branch into the loop.

MoreMasters (AD)

#1,D7
#15, D0
D7, DO
lho 1

Increment loop counter.

Test if loop done...
If not, branch back.

OK, take a look at the above code. First, D7 is initialized to 1 and then the program branches down to lho 2. The loop test is setup here (15 is
the end of the loop). At the compare, ask yourself, is DO greater than or equal to D7? Well, the first time, D0 is 15 and D7 is 1 so the loop
branch will execute. So, MoreMasters is called, 1 is added to the loop counter, and then the loop is checked again. This will loop 15 times
(until D7 has 16 in it). MoreMasters is a trap (in this case, the procedure called MoreMasters will execute the trap) that causes a block of
master pointers to be allocated in the current heap zone. See Inside Mac's (here on referred to as IM) Memory Manager section for a better
description.

50AA:

486D

F420

-S$BEO

PEA

glob3 (A5)

Push the address of glob3 on the stack.

50AE:

50BO:
50B2:
50B4:
50BA:
50BC:
50BE:
50CO0:

50C2:
50C4:
50C6:

50CA:
50CC:
50D0:
50D2:
50D6:

50DA:
50DC:

50E2:
50E4:
50E8:

50EC:

50F0:
50F2:
50F6:

50F8:
50FC:

AB6E

ABFE
A912
2F3C
201F
AQ32
A9CC
42A7

A97B
A930
486E

A910
2F2E
A873
206E
4868

AB87B
2F3C

A893
3F3C
4EBA

3F3C

A88A
422D
42A7

3F3C
A9BY

0000

FFF4

FFF4
FFF4
0008

000E

0029
CE84

0o0cC

F4EF

0004

FFFF

000cC

l.{l
l.Ol
200FFF4

\l \l
200FFF4
'.S'
200FFF4
'Hh..'

U
v/<o0 !

7<)
2001F6E

-$B11

B!
1o 1

_InitGraf ; (globalPtr:Ptr) InitGraf, we see in IM, that InitGraf must
be called once near the start of a program. It requires
one parameter, a pointer to the first QD global
variable. This parameter is first pushed on the stack
in the previous instruction.

_InitFonts These traps can all be found in IM.

_InitWindows

PUSH.L #S$SFFFF

POP.L DO

_FlushEvents ; (whichMask, stopMask:EventMask)

_Telnit

CLR.L - (A7) Note that InitDialogs needs a ProcPtr (a long word).
The clr command here uses auto pre-decrement to
push a NIL pointer onto the stack.

_InitDialogs ; (resumeProc:ProcPtr)

_InitMenus

PEA vho 1 (A6) OK, notice the VAR in the trap below. This means
that info will be returned via the parameter we push
on the stack. So, after the trap, vho 1 will be a
GrafPtr (whereas before the trap, god knows what is
in it).

_GetWMgrPort ; (VAR wPort:GrafPtr)

PUSH.L vho 1 (A6) Now, our GrafPtr is used to set the current Port.

_SetPort ; (port:GrafPtr)

MOVEA.L vho 1 (A6),A0 Now A0 contains our GrafPtr.

PEA 8 (A0) This instruction says to add 8 to A0,and push that
address on the stack.

_ClipRect ; (r:Rect)

PUSH.L #S$SE000C The MoveTo trap requires two integers to be passes,
but only one value is being pushed on the stack.
Since the instruction says to push long, 4 bytes are
being put on the stack, and an integer is only two
bytes. Even though one instruction is being used,
there are actually two parameters being passed to the
MoveTo trap.

_MoveTo ; (h,v:INTEGER)

PUSH #41

JSR DRAWRESS It turns out that DRAWRESS will draw the 41st
string in the STR# resource. If you look in Resedit,
you will see that this is "3.8" the version number.

PUSH #12 Note the lack of a size specifier. Remember that this
means use the word (two bytes) size. Textsize needs
an integer and IM tells us that an integer is two bytes

- or one word.
_TextSize ; (size:INTEGER) This is pretty easy - sets the fontsize to 12
point.
CLR.B glob25 (A5) Here is the .B size specifier, meaning clear only the
low byte of glob25.
CLR.L - (A7)
PUSH #4

_GetCursor ; (cursorID:INTEGER) :CursHandle

OK, this is a slightly different trap, since it returns something on the stack - as evidenced by the colon and description at the end of the trap
parameter list (:CursHandle). Since this trap returns a value on the stack (and not with a passed pointer as with the GWMgrPort above), the
program will first clear enough stack space to hold that value. Thus the CLR.L -(A7). The trap returns a handle which is 32 bits or a long
word. The trap needs an integer, so the program pushes the word 4 onto the stack. Next, the program will pop the CursHandle returned by the
trap off the stack into the variable glob24.

50FE:
5102:
5106:

510A:

510C:
5110:

5114:
5116:
5118:

511A:

511E:
5120:
5124:
5128:
512A:
512C:
512E:

2B5F
1F3C
4EBA

4277

2F3A
3F3C

A9A0
285F
2F0C

4EAD

42A7
2F3A
3F3C
A9AO0
285F
2F0C
4EAD

F4EA
0002
AEFS8

0144
0003

0oca

0130
0006

ooca

-$B16
o<t
2000000

lB' A}

2005252

LA

1000AAG6

'B.'
2005252
S G
Y'('Y
'/T'
1000AA6

POP.L glob24 (A5) This the CursorHandle.
PUSH.B #2
JSR SETTHECU This subroutine is setting the cursor. If you look at it,

you will see that it looks at the parameter passed (2 in
this case) as well as glob25 (0 in this case). When
called from here, it will pass down to the 2nd
SetCursor and use the CursorHandle in glob24.

CLR.L - (A7) Once again, clear space on the stack for a returned
handle.

PUSH.L data260 ; 'PACK'

PUSH #3 GetResource needs the resource type and the ID# to
load.

_GetResource ; (theType:ResType; ID:INTEGER):Handle

POP.L A4 Pop the handle (to the PACK resource) into A4.

PUSH.L 24 And push it back on the stack so HNoPurge can use
1it.

JSR HNoPurge (A5) Once again we see a subroutine with the same name

as a trap. You can bet that the trap will be called
somewhere in the subroutine.

CLR.L - (A7)
PUSH.L data260 ; '"PACK'
PUSH #6

_GetResource ; (theType:ResType; ID:INTEGER):Handle
POP.L A4

PUSH.L A4

JSR HNoPurge (A5)

OK, the previous several lines have basically loaded two resources, PACK #3, and PACK #6. The handles to the two resources have been
made non-purgeable meaning that the memory manager will not remove them to create free space.

5132:
5134:
5138:

42A7
3F3C
4EAD

D8C:

0001
0182

7406

'B.V
o<t
1000D8C

't.

CLR.L - (A7)
PUSH #1
JSR proc6l (A5) This little gem invokes Pack6. My understanding of

the package manager is less than it should be, but it
looks to me like this says do a Pack6 with a selector
of 1. Hell, lets just look at proc 61...

proc61 MOVEQ #6,D2 OK, here is the selector (and not the 1 passed from

the above procedure). So we are going to be calling
the IUGetIntl procedure (I think) with a

513C:

513E:
5140:
5144:
5146:
514A:
514E:
5150:
5152:
5154:
5158:

515C:
515E:
5162:
5164:
5166:
5168:
516A:
516E:
5172:
5174:
5176:
5178:
517A:

parameter of 1 (passed from the calling procedure. Look in IM for details of this trap and its parameters.

D8E:
D90:

D92:

D94 :

285F

2F0C
4EAD
42A7
2F3A
3F3C
A9AO0
285F
2F0C
4EAD
4EAD

4277
2F3A
4267
A9A0
285F
4277
2F3A
3F3C
A9AO
285F
4267
A994
3B5SF

205F
3F02

2F08

ADED

0oca

010A
0007

ooca

0172

00EE

00E2
0001

FFEO

\l

o

l/'

A}

'(_'
'/-'
1000AAG6
'B.'
2005252
S G
"("
v/Tv
1000AA6
1000D7C

'B' A}
200524E
'Bg'
Y.(.Y
'BT'
200524F
<Lt
'(_'
'Bg'

-320

\l

A}

A}

POP.L A0 This pops the parameter passed,

PUSH D2 so that the selector parameter can be put ahead of it
on the stack.

PUSH.L A0 Now the 2nd parm can be put back on the stack and

the trap called.
_Pack6 AutoPop; (selector:INTEGER)

POP.L A4 proc 61 is returning a handle to the intl resource that
it loaded, so save it in A4.

PUSH.L A4

JSR HNoPurge (A5)

CLR.L - (A7)

PUSH.L dataZ260 ; 'PACK'

PUSH #7

_GetResource ; (theType:ResType; ID:INTEGER) :Handle

POP.L A4 A4 now has a handle to Pack #7.

PUSH.L A4

JSR HNoPurge (AS5)

JSR proc59 (A5) This proc calles Pack2 with a selector of 2. This
reads the Disk Initialization package into memory.

CLR.L - (A7) Clear space on stack for a returned handle.

PUSH.L data259 ; '"ICON'

CLR - (A7) Push the integer 0.

_GetResource ; (theType:ResType; ID:INTEGER) :Handle

POP.L A4 A4 has a handle to Icon resource ID 0.

CLR.L - (A7)

PUSH.L data259 ; "ICON'

PUSH #1

_GetResource ; (theType:ResType; ID:INTEGER):Handle

POP.L Ad A4 has a handle to Icon resource ID 1.

CLR - (A7) Make space for the returned RefNum.

_CurResFile ; :RefNum Note - no parameters passed.

POP glob58 (A5) Pop off the returned RefNum.

517E:
5182:
5186:

518A:
518C:
5190:
5192:
5196:
5198:
519C:
51A2:
51A6:
51A8:
51AC:
51AE:
51B2:
51B4:

486D
3F3C
4EAD

7000
2B40
7000
2B40
7000
2B40
3B7C
426D
7000
2B40
7000
2B40
7034
2B40

FEDE
000D
002A

FED4
FECC
F61lE
FFFF
Fel4
F610

F61A

F5FE

Fe6l6

-$122
RS G

100048C

lp' Al
-812C
vp.v
-$134
lp' Al
-$9E2
-$9EA
-S$9EC
lp. A
-$9F0
lp' Al
-$9E6
lp4l
-$A02

PEA
PUSH
JSR

MOVEQ
MOVE.L
MOVEQ
MOVE.L
MOVEQ
MOVE.L
MOVE
CLR
MOVEQ
MOVE.L
MOVEQ
MOVE.L
MOVEQ
MOVE.L

glob56 (A5)

#13

proc5 (A5) Here is proc5 again - the string getter. If you
remember (from looking at DRAWRESS), the 1st
parm is the string ptr, and the 2nd is the string # to
get. This is returning a ptr to the string "The quick
brown fox..." in glob56.

#0,D0

DO, glob52 (AS5)

#0,D0

D0, glob50 (A5)

#0,D0

DO, glob4l (AS)
#SFFFF,glob38 (AS)
glob37 (A5)

#0,DO

DO, glob36 (AS)

#0, DO

D0, glob40 (A5)
#52,D0

D0, glob31 (A5)

The above instructions have simply initialized several global variables. We don't care what they mean at this point. If you like, you can write
down what has been set to what, but I would only recommend this if later on you need to know explicitly what a global contains.

51B8:
51BA:

51BC:
51BE:

51C2:
51C6:
51CA:

51CC:
51DO0:
51D2:
51D6:
51D8:
51DA:

51DE:

4277
7002

2F00
4EAD

2B5F
426D
70FF

2B40
42A7
2EBS8
7002
2F00
4EAD

2B5F

009A

F622
F626

Fe02

02F0

01A2

F5F6

lB. A}
lp' A}

'/.'
1000A5C

-$9DE
-S9DA

-SOFE
'B.'

$2F0
lp'l
l/'l

1001120

-SA0A

CLR.L
MOVEQ

PUSH.L
JSR

POP.L
CLR
MOVEQ

MOVE.L
CLR.L
MOVE.L
MOVEQ
PUSH.L
JSR

POP.L

= (A7)

#2,D0 Note the MoveQ. Remember, this is the same as
MOVE.L (except it executes faster).

DO

NewHandle (A5) NewHandle is a trap that returns a handle to

a block of memory whose size is in DO. It makes

sense to guess that this procedure will do essentially

the same thing - and after checking, it certainly does.

glob42 (AD) So glob42 has a handle to a 2 byte chunk of memory.

glob43 (A5)

#-1,D0 Here is one of those cases where the sign bit is
important. Remember that the -1 is sign extended to
32 bits so DO is being set to all binary ones (-1 in
binary).

D0, glob32 (A5)

= (A7)

DoubleTime, (A7)

#2, D0

DO

proc76 (A5) This is a gross looking (i.e. no Traps anywhere)
procedure so I am not going to attempt to figure it
out. You will want to use the technique a lot (the
"Too Gross" technique) to determine which

procedures to spend time with.
glob29 (A5)

51E2:

51E8:
51EC:
51EE:

51F0:

51F4:
51F8:

51FE:
5200:
5202:
5204:
5208:

520C:

520E:
5212:
5216:

5218:
521A:

521cC:

521E:
5222:
5224:
522A:

522E:
5232:

5234:
5238:

207¢C

43ED
703F
22D8

51C8

422D
267C

4A53
6D20
42A7
3F3C
4EAD

42A7

3F3C
4EAD
201F

BOSF
56C0

4400

1B40
4217
2F3C
4EAD

2B5SF
6708

487A
4EAD

0000 OADS8

F4F6

FFEC

F4F5

0000 028E

008F
00E2

009F
00E2

F4F5

0001
009A

0000

F4FO0

FE26
0092

SAD8

-$BOA
vp?v

™ A}

20051EE

-$SBOB
$28E

lJS'
2005222
'B.'
eyt
1000AC6

RS G
1000AC6

-$SBOB
IB' Al
/<!
1000A5C

-$B10
200523C

200505C
1000A1E

lho 3

lho 4

MOVEA.L #SysResName, AQ

LEA
MOVEQ
MOVE.L

DBRA

CLR.B
MOVEA.L

TST
BLT.S
CLR.L
PUSH
JSR

CLR.L

PUSH
JSR
POP.L

CMP.L
SNE

NEG.B

MOVE.B
CLR.L
PUSH.L
JSR

POP.L
BEQ.S

PEA
JSR

glob28 (A5) ,Al

#63,D0

(AO)+, (A1) +

DO, 1ho 3

glob27 (A5)
#Rom85, A3

(A3)

lho 4

- (A7)

#143
proc38 (A5)

= (A7)

#159
proc38 (AD)
DO

(A7) +,DO0
DO

DO

DO, glob27 (A5)

= (AT)
#$10000

NewHandle (A5)

glob26 (A5)
lho_ 5

MYGROWZO

SetGrowZone (Ab5)

Put a pointer to the System File's name in
AO0.

Put the address of glob28 in Al.
Set up DO as a loop counter.
This moves 4 bytes from A0 to Al. Note the use of
auto post increment to automatically move the
pointers to the next available data each time. This
moves 4 bytes of the System name into glob28. Note
that glob28 will not be a pointer to the Sys Name, but
will rather contain the actual string data.
This decrements DO (the loop counter) and branches
back to the start of the loop until it is finished.

ROMSS is another of those variables that my old IMs
are missing so god only knows what is going on here.
I'll guess that it is looking for the 128K roms.

Well, let's see here. Proc38 uses the passed parm as a
trap number and returns that traps address on the
stack.

Note that the trap address has not been popped off the
stack. So when these next instructions are done, that
address will still be on the stack.

Get another trap address on the stack,
and put it in DO, leaving the first trap address on the
stack.
Now, compare the two trap addresses,
and set the low byte of DO to FF hex if they are not
the same.
Do 2's complement - make the low byte of DO its
own negative. Since DO0's byte is either 0 or FF (from
the SNE), the NEG will make it either 0 (if it was 0)
or 1 (if it was FF) - (for NEG, invert the bits, then
add a binary 1).

And save this number.

Get a new Handle for a block of size 10000
hex.
And save the handle.
Branch if a NIL pointer (meaning the memory was
not available) is popped off the stack.
Otherwise setup a grow zone function.
A grow zone procedure is a custom method
for handling low memory conditions and overrides

the memory managers routines. Not a great description, but we don't really care about this.

523C: 4CDF 1880 'L...!
5240: 4ESE TNAY
5242: 4E75 "Nu'
5244 : D345 5455 5020 2020
524C: '.."'
524E: 4943
5252: 5041

The DRAWRESS Procedure
1FoE:
1F6E:

OK, you should be able to just look at this and see what happens. First off, look at the trap, DrawString. It takes one parameter, a pointer to a
string. Now, the previous line says to push the address of the local variable so this has to be the string pointer. Go back a few lines and we see
that proc5 is being called with two parameters: the string pointer, and the parameter from the calling procedure. You can deduce that proc5 has
to get a string from somewhere, and probably will call the GetString trap or some equivalent. In fact, if you look at proc5, you will see that it
calls GetResource (resource type STR#). This returns a handle to the STR# resource. Proc5 then uses the second parameter to figure out
which string the calling procedure really wants. Proc5 loops through the STR# resource until it comes to the right string, then moves a pointer

lho 5

data257

data258
;—refs -
dataz259
;—refs -

data260

vip 1
paraml

;-refs -

’

MOVEM.L (A7)+,D7/A3-A4 Restore those saved regs,
UNLK A6 Kill the stack frame,

RTS And return to the caling proc.
DNAME SETUP , 0

DC.W 8

2/SETUP

DC.B 'ICON'

2/SETUP

DC.B ' PACK'
QUAL DRAWRESS ; b# =284 s#2 =procl4s8
VEQU -256 One local variable.

VEQU 8 One parameter needed.
VEND

2/DRAWFHIN 2/SETUP 2 /DRAWNUM
2/DRAWDHIN

to the string into the first parameter and returns. When it gets back here, vfp 1 contains a pointer to the string.

1F6E: 4E56 FFO0O 'NV..!
1F72: 486E FFO0O 200FF00
1F76: 3F2E 0008 2000008
1F7A: 4EAD 002A 100048C
1F7E: 486E FFO0O 200FF00
1F82: A884 oLt
1F84: 4ESE 'NAY
1F86: 205F v
1F88: 544F 'TO!'

DRAWRESS

LINK A6, #-5100

PEA vip 1(A6)

PUSH paraml (A6)

JSR procb (A5)

PEA vip 1(A6) At this point, vfp_1 has the stringptr.
_DrawString ; (s:Str255)

UNLK A6

POP.L AQ

ADDQ #2,107

1F8A: 4EDO 'N. JMP (AOQ)

Note that there is no RTS instruction to return. The subroutine uses a common substitute. First it pops the return address off the stack (which is
actually what the RTS would have done anyways) and then does an indirect JMP (A0). This just means to jump to whatever A0 points to and
A0 points to the return address.

1F8C: C452 4157 5245 5353 datal25 DNAME DRAWRESS, 0,0

The MAKEAWIN Procedure

5852:

5852:

5852:
5856:

5858:
585C:
585E:
5860:
5862:
5864:

5868:
586C:

5870:

5874:
5878:
587C:
5880:
5884:

5886:

588C:

5890:
5892:

4E56
42A7

3F3C
4277
70FF
2F00

A97C

2B5F

486D
3F3C

4EBA

486D
3F3C
4EBA
206D
2050

216D

206D

2050
216D

FFFO

000A

FFFA

FEC4
000A

FF32

FECS8
000B
FF26
FEC4

FEC8 0004

FECS8

FEC4 0004

vhy 1
vhy 2
;—refs -

'NV..' MAKEAWIN
'B. A}

o<t

-6

-$13C
R

20057A4

-$138
RS G
2005774

-$13C
\l PY

-$138

-$138

A PV
-$13C

QUAL

VEQU
VEQU
VEND

MAKEAWIN ; b# =490 s#2 =proc209

-12 Two local variables, no parms passed.
-8

1/DA Mover

LINK
CLR.L

PUSH
CLR.L
MOVEQ
PUSH.L

POP.L

PEA
PUSH

JSR

PEA
PUSH
JSR
MOVEA.L
MOVEA.L

MOVE.L

MOVEA.L

MOVEA.L
MOVE.L

A6, #-510

- (A7) These instructions are setting up the GetNewDialog
below. 1st, clear space for the DialogPtr.

#10 Push the Dialog ID #.

- (A7) Push a NIL pointer for wStorage

#-1,D0

DO Push a 32 bit -1 (IM says to do this to make the

dialog the frontmost window).
_GetNewbDialog ; (Dl1gID:INTEGER; wStorage:Ptr;
behind:WindowPtr) :DialogPtr

glob67 (A5) And pop off the dialogPtr. This will be used by proc

MAKEBOX.

glob48 (A5)

#10 This is the dialog item - the left list box if you check
Resedit.

MAKEBOX Well, after inspecting this procedure, it looks like
more can be determined by just looking at these few
instructions here. Notice that MakeBox is being
called with two parameters: The 1st being an
unknown global variable, and the second being one
of the two list boxes in Mover's main dialog. So it
looks like MakeBox is just performing some
housekeeping on these two list boxes.

glob49 (A5)

#11 Now do the right list box.

MAKEBOX

glob48 (A5) ,A0 Get the address in (not of) glob48 into A0,

(20), A0 and dereference it - or get whatever glob48 was

pointing at into AQ.

glob49 (A5),4 (A0) Now move glob49 (a pointer I suspect) into
4 past AO. So glob48 contains a pointer which points
four bytes behind the pointer in glob49.

glob49 (A5),A0 Now do the exact opposite. Grab the pointer
in glob49 and stick the pointer in glob48 4 bytes past
it.

(AO) , A0

glob48 (A5),4 (AO)

These last few instructions were kind of a mess because we don't no anything about how globs 48 and 49 will be used. We will come back here
after looking at MainEven and particularly HandleBu. It will turn out that these two globals are pointers (or maybe handles, we don't really
care) to the two list boxes on the main dialog. In addition, each pointer as a way of referring to the other list box. At this point, this does not
make any sense, but later on, glob 50 will be set to either glob48 or glob 49 (or NIL) depending on which list box - if any - has a selection
made in it. The reason that glob48 and glob49 need to refer to each other, is that glob5S0 will be used to check both list boxes to see if their

associated volumes are locked. See HandleBu for details.

5898:
589cC:
58A0:
58A4:
58A8:

58AC:

58AE:
58B2:
58B6:
58BA:
58BE:
58C2:

58C4:
58C8:
58CC:
58D0:
58D4:
58D8:

2F2D
3F3C
486E
486D
486E
A98D

2F2D
3F3C
486E
486D
486E
A98D

2F2D
3F3C
486E
486D
486E
A98D

FFFA
0002
FFF4
FFF6
FFF8

FFFA
0006
FEF4
FFEC
FFF8

FFFA
0007
FFF4
FFFO
FFF8

-6
o<t
200FFF4
—$A
200FFF8

-6
et
200FFF4

-$14
200FFF8

-6

RS G
200FFF4
-$10
200FFF8

PUSH.

PUSH
PEA
PEA
PEA

PUSH.

PUSH
PEA
PEA
PEA

PUSH.

PUSH
PEA
PEA
PEA

glob67 (A5)
#2

vhy 1(A6)
glob66 (A5)
vhy 2 (A6)
_GetDItem

glob67 (A5)
#6

vhy 1(A6)
glob63 (A5L)
vhy 2 (A6)
_GetDItem

glob67 (AD)
#7
vhy 1 (A6)
glob64 (AD)
vhy 2 (A6)
_GetDItem

’

I

’

Item is the Copy button.

This will save a handle to it.
(dlg:DialogPtr; itemNo:INTEGER;

kind:INTEGER; VAR item:Handle;

box:Rect)

Item is the left Open button.

This will save a handle to it.
(dlg:DialogPtr; itemNo:INTEGER;

kind:INTEGER; VAR item:Handle;

box:Rect)

Item is the right Open button.

This will save a handle to it.
(dlg:DialogPtr; itemNo:INTEGER;

kind:INTEGER; VAR item:Handle;
box:Rect)

VAR
VAR

VAR
VAR

VAR
VAR

Now the program is going to assign dialog procedures to various of its items. Items 12 and 13 - the two filename boxes are assigned the
DrawName proecdure. Items 14 - the size selected box - gets DrawSize. Item 15 -the font text demo box - gets DrawHint. Items 16 through
18 - various lines in the dialog box - get DrawGray. And items 19 and 20 - the free space on disk boxes - get DrawFree. If you examine
SetDProc, you will see that it simply invokes GetDItem to get a handle to the dialog item (passed from the list below) and then uses SetDItem

to set the dialogProcPtr to the procedure passed from the list below.

58DA:
58DE:
58E2:
58E6:
58EA:
58EE:
58F2:
58F6:
58FA:
58FE:
5902:

3F3C
487A
4EBA
3F3C
487A
4EBA
3F3C
487A
4EBA
3F3C
487A

00o0cC
FB2E
FETE
000D
FB22
FE72
000E
FC32
FE66
000F
FA3A

RS G
200540E
2005762
RS G
200540E
2005762
el
200552A
2005762
RS G

200533E

PUSH
PEA
JSR
PUSH
PEA
JSR
PUSH
PEA
JSR
PUSH
PEA

#12
DRAWNAME
SETDPROC
#13
DRAWNAME
SETDPROC
#14
DRAWSIZE
SETDPROC
#15
DRAWHINT

5906: 4EBA FES5A 2005762
590A: 3F3C 0010 e, !
590E: 487A FEI1C 200572C
5912: 4EBA FE4E 2005762
5916: 3F3C 0011 reo, !
591A: 487A FE10 200572C
591E: 4EBA FE42 2005762
5922: 3F3C 0012 R
5926: 487A FEO04 200572C
592A: 4EBA FE36 2005762
592E: 3F3C 0013 re, !
5932: 487A FD12 20056406
5936: 4EBA FE2A 2005762
593A: 3F3C 0014 O
593E: 487A FDO6 20056406
5942: 4EBA FE1E 2005762
5946: 2F2D FFFA -6
594A: A873 '.s'
594C: 2F2D FFFA -6
5950: A915 U
5952: 2F2D FFFA -6
5956: A91F L
5958: 3F3C 0002 re, !
595C: 4EBA A78A 20000E8
5960: 3F3C 0003 O
5964: AEBA A782 20000E8
5968: 2F2D FFFA -6
596C: A981 oLt
596E: 4ES5SE NN
5970: 4E75 "Nu'
5972: CD41 4B45 4157 494F
The MAKEBOX Procedure.
5774 :
5724 :
57A4: 4E56 FFF2 TNV, L
57A8: 48E7 0018 'H...'
57AC: 266E 000A 200000A
57B0: 2F2D FFFA -6
57B4: 3F2E 0008 2000008
57B8: 486E FFF6 200FFF6

data270

vhx 1
vhx 2
vhx 3
vhx 4
param?
paraml

;-refs -

MAKEBOX

JSR SETDPROC

PUSH #16

PEA DRAWGRAY

JSR SETDPROC

PUSH #17

PEA DRAWGRAY

JSR SETDPROC

PUSH #18

PEA DRAWGRAY

JSR SETDPROC

PUSH #19

PEA DRAWFREE

JSR SETDPROC

PUSH #20

PEA DRAWFREE

JSR SETDPROC

PUSH.L glob67 (A5) Now the dialog is made the current Port
_SetPort ; (port:GrafPtr)

PUSH.L glob67 (A5) and make the dialog visible,
_ShowWindow ; (theWindow:WindowPtr)

PUSH.L glob67 (A5) and make it the frontmost window.
_SelectWindow ; (theWindow:WindowPtr)

PUSH #2

JSR DIMITEM These instructions dim the two Open buttons.
PUSH #3

JSR DIMITEM

PUSH.L glob67 (A5)

_DrawDialog ; (dlg:DialogPtr) And finally, draw the damn thing.
UNLK Ab

RTS

DNAME MAKEAWIN, 0,0

QUAL MAKEBOX ; b# =488 s#2 =proc208
VEQU -14

VEQU -10

VEQU -8

VEQU -4

VEQU 8 Parm 2 is the dialog item #
VEQU 10
VEND

2/MAKEAWIN
LINK A6, #-SE
MOVEM.L A3-A4,- (A7)
MOVEA.L paraml (A6),A3 A3 gets whatever is in parm 1.
PUSH.L glob67 (A5) Push the DialogPtr,

PUSH param?2 (A6) And push the item #.

PEA vhx 2 (A6) This will get the Kind.

57BC:
57CO0:
57C4:

57Co6:
57CA:
57CE:
57D2:
57D6:
57DA:

57DC:
57DE:
57E0:
57E2:
57E6:

57E8:
57EA:

57EC:

57F0:

57F4:
57F6:

57F8:

57FC:
57FE:

5800:

5804:

5808:

580A:

486E
486E
A98D

2F2D
3F2E
3F2E
487A
486E
A98E

4277
7064
2F00
4EAD
269F

2053
2850

28AD

426C

204cC
5088

43EE

20D9

20D9

302E

906E

48C0

81FC

FFF2
FFF8

FFFA
0008
FFF6
F662
FFF8

009A

FFFA

0060

FFF8

FFEC

FFF8

0010

200FFF2
200FFF8

\l \l

-6
2000008
200FFF6
2004E36
200FFF8

\l \l

lB'l
lpdl
l/‘l
1000A5C
l&.l

A} Sl
A} (Pl

200FFF8

200FFFC

200FFF8
YH.Y

PEA vhx 1 (A6) This will get the IltemHandle.

PEA vhx 3 (A6) This will get the Box.

_GetDItem ; (dlg:DialogPtr; itemNo:INTEGER; VAR
kind:INTEGER; VAR item:Handle; VAR
box:Rect)

PUSH.L glob67(A5) Now push the dialogPtr and item again...

PUSH param2 (A6)

PUSH vhx 2 (A6) Push the item Kind

PEA DRAWBOX See IM - this is a procPtr.

PEA vhx 3 (A6) And push the Box

_SetDItem ; (dlg:DialogPtr; itemNo, kind:INTEGER;
item:Handle; box:Rect)

CLR.L - (A7)

MOVEQ #100,DO0

PUSH.L DO

JSR NewHandle (AD)

POP.L (A3) Get a new handle - size 100 - and put it into parml
(which A3 points to).

MOVEA.L (A3),AQ AQO gets the handle.

MOVEA.L (AO0),A4 And A4 gets the pointer. OK, A0 is a handle meaning
it points to a pointer which in turn points to whatever
it is we care about (in this case, a free block of
memory). That means that (AQ) grabs what ever A0Q
points to which is (by definition of a handle) the
pointer.

MOVE.L glob67 (A5), (A4) And now we put the dialogPtr into the block
of memory gotten by NewHandle.

CLR 96 (n4) Remember, A4 points (its a pointer, not a handle!) to
a block of memory, 100 bytes long. So this
instruction simply clears the 96 byte in that block.

MOVEA.L A4,A0 Put the pointer into AO.

ADDQ.L #8,A0 Add 8 to A0. Previously we had stored the dialogPtr
at the beginning of this block. Since a pointer is 8
bytes long, A0 no points to the first byte after the
dialogPtr.

LEA vhx 3 (A6),Al vhx_3 is a Box which is of type Rect which is 4
integers, or 4 words, or two long words.

MOVE.L (Al)+, (AO) +

MOVE.L (Al)+, (AO0)+ So move the Box information into the free memory
right after the dialogPtr and increment A0 to the next
free byte.

MOVE vhx 4 (A6),D0 This is tough since we don't know what vhx_4 is to
start with.

SUB vhx 3 (A6),D0 But whatever, subtrack vhx_3 from it, result in DO.

EXT.L DO At this point, DO is accurate to the word length (since
that was all the SUB specified). This will make it's
sign (negative or posative) accurate to all 32 bits.

DIVS #16,D0 Now, divide by 16.

580E: 3940 0062
5812: 426C 0058
5816: 397C FFFF 0056
581C: 422C 0014
5820: 206D FFFA
5824: 2153 0098
5828: 2F13

582A: 4EBA AEA4
582E: 2053

5830: 2050

5832: 2068 0010
5836: 2050

5838: 2153 0024
583C: 4CDF 1800
5840: 4ESE

5842: 205F

5844 : 5CAF

5846: 4EDO

5848: CD41 4B45 424F
The MAINEVEN Procedure

'9@.b"

'Bl1.X'
‘9., V!
'B,.."

-6
TS
'/.'
20006D0

A S'
\} P'
''h..'
A P'
'1s5.38!
'L...!
'N/\'
\} \}
1\61
'N A

5820 dataz269

MOVE DO, 98 (A4)

CLR 88 (A4)

MOVE #SFFFF, 86 (A4)
CLR.B 20 (A4)
MOVEA.L glob67 (A5),A0
MOVE.L (A3),152(A0)
PUSH.L (A3)

JSR MAKESBAR
MOVEA.L (A3),A0
MOVEA.L (A0),AQ
MOVEA.L 16 (A0),A0
MOVEA.L (A0),A0
MOVE.L (A3),36(A0)
MOVEM.L (A7)+,A3-A4
UNLK A6

POP.L A0

ADDOQ #6,A7

JMP (A0)

DNAME MAKEBOX , 0,0

And put this value (whatever it is) in the last two
bytes (notice it is a word length instruction) of the
memory block.

These last instructions are filling in various parts of
the memory block.

Put the DialogPtr back in AQ.
A3 still points to parm1.
So, this effectively pushes parm1
This is fairly complicated, but this procedure makes a
scroll bar for the dialog item.

Can't tell what these instructions are doing.

Pop off the return address.

And jump back to the calling procedure.

Basically, the main loop consists of a set of housekeeping routines, a call to ModalDialog to read dialog events that take place, and a simple
jump table to handle the various events. D7 needs to be zero for the loop to keep running. If an error occurs, or the user hits Quit, D7 is
changed to one and the procedure exits. First, DA Mover attempts to allocate a large block of memory (10000 hex) into glob26. If this is
successful (or glob26 already has a memory handle) then the program skips down to make some more checks - otherwise a memory error is
generated. Next, the procedure checks to see if there are any files open and if so, calls FlushVol to write any changes to disk.

0:

10:
12:
18:

oo SO

4E56
48E7
4207
4AAD

661C
4277

2F3C
4EBA

FFF8
0308

F4FO0

0001
0A42

0000

vab 1
;-refs -
'NV..'T MAINEVEN
'H...'
IB‘I
-$B10 lab 1
100002cC
IB. A
/<o !
1000A5C

QUAL MAINEVEN ;
VEQU -6
VEND

1/DA Mover

b#

=1 s#l1 =procl

Enable the Main Event Loop.

glob46 will (or does) contain a handle to a large
block of memory. So, if glob26 already has the
handle, branch down, otherwise try to get some
memory.

Clear stack space for the returned handle.
Size of memory block needed.

LINK A6, #-8
MOVEM.L D6-D7/A4,- (A7)
CLR.B D7

TST.L glob26 (A5)
BNE.S lab 2

CIR.L - (A7)

PUSH.L #$10000

JSR NewHandle

1C:
20:

22
26:

2A:
2C:
2E:
32:
36:
38:

3C:

3E:
40:
42
46:
4A:

2B5F
660A

3F3C
4EAD

7TEO1
1007
6600
206D
2850
4A6C

670E

4267
42A7
3F2C
4EBA
3C1F

F4FO0

0032
01ca

00DO0
FEC4

0058

0058
0BAE

-$B10
100002C

'e<.2!
200023C

\l \l

1000100
-$13C

A} (Pl

'Jl.xX!

100004cC

lBgl
'B.V
'?, . X!
1000BF6
l<‘l

lab 2

POP.L
BNE.S

PUSH
JSR

MOVEQ
MOVE.B
BNE
MOVEA.L
MOVEA.L
TST

BEQ.S

CLR
CLR.L
PUSH
JSR
POP

glob26 (AD)
lab 2

#50
DOALERT (A5)

#1,D7
D7, DO
lab 15

glob48 (A5),A0

(A0) , A4
88 (A4)

lab 3

- (A7)

- (A7)

88 (A4)
FlushVol
D6

And get the handle in glob26.

Remember, a NIL handle or pointer is all zeroes.
glob26 either has a valid handle or a NIL handle. If it
is valid, branch.

Otherwise do some memory alert (you can check this
if you like.)
and disable the main event loop.

Go if loop disabled from above.
Get reference to left list box.

Look at the descrpition of FlushVol (next paragraph)
to see what this variable means.

Seeing that 88(A4) is the VRefNum, then branch if it
is zero (no volume available - i.e. the list box has no
opened file in it).

Space for function result (OSErr).

iovNamePtr parameter (NIL).

iovRefNum parameter.

If a volume is available, flush it.

Pop off error code.

4C: 206D FECS8 -5138 lab 3 MOVEA.L glob49 (A5),A0 Now do the same thing with the right list

box.
50: 2850 '(P' MOVEA.L (AOQ),A4
52: 4A6C 0058 'Jl.xX! TST 88 (A4)
56: 670E 1000066 BEQ.S lab 4
58: 4267 'Bg’ CLR - (A7)
S5A: 42277 'B." CLR.L - (A7)
5C: 3F2C 0058 '?, . X! PUSH 88 (A4)
60: 4EBA 0B94 1000BF6 JSR FlushVol
04: 3ClF <! POP D6

Lets take a quick look and FlushVol and we can see a couple of things. Fist of all, we can quickly see what the parameters are: Parml is a
pointer to the Volume Name, Parm2 is the Volume Ref Number. Looking back at MainEven, we see that the PEA 88(A4) is referring to the
Volume Reference Number. FlushVol "writes the contents of the associated volume buffer and descriptive informatin about the volume (if
they've changed since the last time FlushVol was called)." [IM II pg 89]. The returned result of this procedure is the OSErr.

;-refs - 1/MAINEVEN 2/FLUSHRES 2/REMOVEST
BF6: 4E56 FFCO '"NV..' FlushVol LINK A6, #-540
BFA: 41EE FFCO 200FFCO LEA Vbu_l(A6),AO
BFE: 316E 0008 0016 2000008 MOVE param?2 (A6) , ioVRefNum (AQ0)
C04: 216E 000A 0012 200000A MOVE.L paraml (A6),ioNamePtr (AOQ)
COA: A013 L _Flushvol ; (A0 | IOPB:ParamBlockRec) :DO\OSErr
COC: 3D40 0OOOE 200000E MOVE DO, funRslt (A6)
Cl10: 4ESE NN UNLK A6
Cl2: 225F T POP.L Al
Cl4: 5C8F "\ ADDQ.L #6,A7
Cloe: 4ED1 'N.' JMP (A1)

back to MainEven

66: 4EAD 020A 2005DCA lab_4 JSR HANDLEBU (A5)

6A: 486D 0212 2005EF8 PEA MYFILTER (A5)

oE: 486E FFFA 200FFFA PEA Vab_l(A6)

72: A991 vt _ModalDialog ; (filterProc:ProcPtr; VAR itemHit:INTEGER)

ModalDialog is the all-purpose dialog handler. It will monitor events and wait for an event involving an active dialog item. Upon returning,
the dialog item number is returned in ModalDialog's 2nd parameter - in this case, vab_1. Once the trap returns, the program has to figure out
what to do now that an item has been activated. Below, is a simple jump table that repeatedly subtracts integers from vab_1 until it is zero, at
which point the program knows that it has the proper dialog item. It then branches to the appropriate routine.

ModalDialog also takes a parameter that specifies a special procedure that it can call whenever an event occurs. What that means, is that the
line PEA MYFILTER is telling ModalDialog to execute the procedure MYFILTER anytime an event occurs. We can take a look at
MYFILTER to see what it is doing (although in cracking, we probably don't care). Right now I will guess that MYFILTER is taking care of
things like allowing multiple selections in the list boxes,. displaying the font string, and displaying the size of the selection.

74
78:
TA:
C:
TE:
80:
82:
84:
86:
88:
8A:
8C:
8E:
90:
92:
94 :
96:
98:
9A:
9C:
9E:
AQ:

Ad:
AG:
A8:

AA:
AC:
BO:
B2:
B6:
B8:
BC:
BE:
C2:
Cé6:
C8:
CC:
DO:
D2:
D6:
DA:
DC:
EO:
E4:
E8:
EA:
EE:
F2:
Fo6:
F8:
FC:

302E
5540
6736
5340
672C
5340
6734
5340
6720
5340
673C
5340
6742
5340
672A
5340
6726
5340
6740
5340
674A
0440

6752
6058
TEOL

6054
4EAD
604E
4EAD
6048
4EAD
6042
3F2E
4EAD
6038
2F2D
4EAD
602E
2F2D
4EAD
6024
2F2D
2F2D
4EAD
6016
2F2D
2F2D
4EAD
6008
3F2D
4EAD

FFFA

0028

01E2

0lEA

023A

FFFA
022A

FEC4
0242

FECS8
0242

FEC4
FFES8
0202

FEC8
FFES8
0202

FEDC
0232

200FFFA
lU@l
10000B2
'S@'
10000AC
'S@'
10000B8
ls@l
10000A8
'S@'
10000C8
'S@'
10000D2
'S@'
10000BE
ls@l
10000BE
'S@'
10000DC
'S@'
10000EA
TLe. ("

10000F8
1000100

LIV |
1000100
2004E98
1000100
2004F5C
1000100
2006BOE
1000100
200FFFA
20064F2
1000100

-$13C
2006B50
1000100

-$138
2006B50
1000100

-$13C

-$18
2005CBS8
1000100

-$138

-3$18
2005CBS8
1000100

-$124
2006A6A

lab 5

lab 6
lab 7
lab 8

lab 9

lab_10

lab 11

lab 12

lab 13

lab 14

MOVE
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBQ
BEQ.S
SUBI

BEQ.S
BRA.S
MOVEQ

BRA.S
JSR
BRA.S
JSR
BRA.S
JSR
BRA.S
PUSH
JSR
BRA.S
PUSH.L
JSR
BRA.S
PUSH.L
JSR
BRA.S
PUSH.L
PUSH.L
JSR
BRA.S
PUSH.L
PUSH.L
JSR
BRA.S
PUSH
JSR

vab 1 (A6),DO0
#2,D0
lab 7
#1,D0
lab 6
#1,D0
lab 8
#1,D0
lab 5
#1,DO0
lab 10
#1,D0
lab 11
#1,D0
lab 9
#1,D0
lab 9
#1,DO0
lab 12
#1,D0
lab 13
#40,DO0

lab 14
lab 15
#1,D7

lab 15
REMOVEST (A5)
lab 15
COPYSTUF (A5)
lab 15
DOHELP (A5)
lab 15
vab 1 (A6)
SELCLICK (A5)
lab 15
glob48 (AD)
DOCFILE (A5)
lab 15
glob49 (A5)
DOCFILE (A5)
lab 15
glob48 (A5)
glob62 (A5)
CONTENTC (A5)
lab 15
glob49 (A5)
glob62 (A5)
CONTENTC (A5)
lab 15
glob55 (A5)
HANDLEIN (A5)

Copy button.

Remove Button.

Help Button.

Quit Button.

Left Open/Close Button.

Right Open/Close Button.

Font Radio Button.

DA Radio Button.

Left List Box.

Right List Box.

We will have to check MyFilter to see what this is
doing.

User hit Quit, so disable the loop and jump to the
loop end

Remove Button.

Copy Button.

Help Button.

Push the selected item number,

and change to either Fonts or DAs.

Left Open (or close) Button.

Right Open (or close) Button.

Remember this guy? Refers to the left box.
Handle a list box click.

Refers to the right list box.

List box handler.

100: 1007 vt lab 15
102: 6700 FFO6 100000A
106: 4CDF 10CO "L..."
10A: 4ES5E TNAT
10C: 4E75 "Nu'
10E: CD41 494E 4556 454E datal
HANDLEBU Procedure
5DCA:
vid 1
vid 2
5DCA:

MOVE.B

BEQ

MOVEM. L

UNLK
RTS

DNAME

QUAL

VEQU
VEQU
VEND

D7,DO0 Here is the end of the main loop. This checks to see
if the loop should terminate. If not, branch back to
the beginning of the loop.

lab 1

(A7) +,D6-D7/A4 At this point, either an error occurred or the
user has hit the Quit button.

A6

MAINEVEN, 0,0

HANDLEBU ; b# =501 s#2 =proc2l4

=272
-256

A quick observation here. After scanning the first few lines, you can notice some hereto unknown things. Look at the references to glob50. At
this point, we know that globs 48 and 49 have been set up to refer (we don't know exactly how) to the two list boxes in the main dialog. A
quick look down a ways reveals that D7 is used to pass an integer to our DrawString procedure (proc5). If we assume that D7 is the ID # of the
STR# resource (since this is the parameter that proc5 requires), then that MOVEQ 1,D7 (line 5) must refer to STR# 1 which reads "Copy". The
next two strings in the resource are "<<Copy<<" and ">>Copy>>" which are exactly the three strings that the copy button on the dialog can
contain. So we might assume right now that glob50 refers to one of the list boxes, and can be used to determine whether the user has selected
an item(s) in the list box. Based upon this information, the procedure will fill in the copy button with the proper string.

5DCA:
5DCE:
5DD2:
5DD6:
5DD8:
5DDA:

5DDE:

5DE2:

4E56 FEEE
48E7 0308
4AAD FECC
660C
7E01
3F3C 0003

4EBA A308

607A

Check the list box (it seems)

Look at what this branch is skipping.

The string is "Copy".

DIMITEM needs the item number to dim as a parm.
Item 3 is the Remove button.

Take a quick look at DIMITEM and you will see that
it takes an item number as a parameter, pushes the
parameter, then pushes the number -1 (255 if we are
talking about signed numbers) and calls HILITEIT
which uses the 2nd parameter to either set or dim the
desired button.

;-refs - 1/MAINEVEN

'NV..' HANDLEBU LINK A6, #-5112
"H...!' MOVEM.L D6-D7/A4,- (A7)

-$134 TST.L glob50 (A5)
2005DE4 BNE.S 1id 1
RS MOVEQ #1,D7
1oLt PUSH #3
20000E8 JSR DIMITEM
2005E5E BRA.S 1id 8

The Remove button is dimmed anytime there is no
selection in one of the list boxes. How did this
procedure know there was no selection? It

checked to see if glob50 was blank (or possible a NIL pointer) and if so, there is no selection.

5DE4:

5DES8:
5DEC:
5DEE:
5DFO0:
5DF2:

5DF4:

5DF8:
5DFA:
5DFE:
5E00:

5E04:
5E08:
5EOQOA:
S5EOQE:
5E10:
5E14:

5E16:
5E18:
S5E1A:
S5E1C:
S5E1E:

5E20:
5E22:
5E24:

202D FECC

BOAD FEC4
6604
7EQ03
6002
7TEQ02

206D FECC

2050
2068 0004
2050
3C28 0058

206D FECC
2050
2068 0004
2050
4A68 0056
6C02

4246
4046
57C0
4A00
6616

2F00
4267
3F06

-$134 1id 1

-$13C
2005DF2

A} A}

2005DF4
el 1id 2

-$134 1id_3

-$134
A} Pl
'"h..'
\l PV
'Jh.V!'
2005E18

lBF'
lJF'
VW' A}
lJ' A}
2005E36

1id 4

l/.l
ngv
l?.l

MOVE.L

CMP.L
BNE.S
MOVEQ
BRA.S
MOVEQ

MOVEA.

MOVEA.
MOVEA.
MOVEA.
MOVE

MOVEA.
MOVEA.
MOVEA.
MOVEA.
TST
BGE.S

CLR
TST
SEQ
TST.B
BNE.S

PUSH.L
CLR
PUSH

[

[) e

glob50 (A5), DO

glob48 (A5),DO0O

1id 2
#3,D7
1id_3
#2,D7

glob50 (A5) ,A0

(A0) , AO
4 (A0),A0
(A0) , A0
88 (A0) , D6

glob50 (A5), A0

(A0), A0
4 (A0) , AD
(A0) , A0
86 (A0)
1id 4

D6
D6
DO
DO
1id_5

DO
= (A7)
D6

Here is the real key. glob50 is being
compared to glob48. We know glob48 has something
to do with the left list box, and look what happens if
they are the same..D7 gets 3 which means
string">>Copy>>" - the user has made a selection in
the left list box.

Otherwise the user has made a selection in the right
list box. A quick note: glob50 was not compared to
glob49, but it was compared to glob48. We can
deduce from this that glob50 had to contain either
glob48 or glob49. What this means is that glob50
seems to indicate that something has been selected in
one of the list boxes or is empty if there is no
selection.

This is a mess. We know that glob50 is a
handle to a host of information about one of the list
boxes, but we didn't bother to figure which bytes
mean what. The best thing to do here is to analyze all
the branches in the mess, see where they go, and look
at what happens as a result of each branch. So...

Look familiar? Let's guess that this is a vRefNum for
the list box containing the selection.

OK, here is a branch. If it executes, D6 has
something (which we guessed to be a vRefNum) in it
which gets passed on to lid_4.

Otherewise, D6 is zeroed (no volume available).

DO=FF hex if there is no volume.

This branch executes if D6 was zero and will cause 1
to moved into D7 - "Copy".

Save DO on the stack (not a parameter)

Create space on the stack for the return value.

Aha! We were right. proc6 needs a vRefNum and
here is good old D6 being pushed as a parm. D6 is
indeed the vRefNum.

5E26:

5E2A:
5E2C:
S5E2E:

5E30:

5E34:

5E36:

5E38:
5E3A:

S5E3E:
5E40:

S5E44:
5E48:
S5E4A:
5E4C:

5E50:
5E54:
5E56:

S5ESA:

4EAD

121F
201F
8001

0240

6702

7E01

4267
206D

2050
3F28

4EAD
101F
670A
3F3C

4EBA
6008
3F3C

4EBA

0032

0001

FECC

0058

0032

0003

A296

0003

A2AE

10004CA JSR
U POP.B
v POP.L
L OR.B
rLe..!’ ANDI
2005E38 BEQ.S
LRV 1id 5 MOVEQ
'Bg" lid 6 CLR
-$134 MOVEA.L
' p! MOVEA.L
T2 (.X! PUSH
10004CA JSR
U POP.B
2005E56 BEQ.S
oLt PUSH
20000ES8 JSR
2005E5E BRA.S
"?<L 1id 7 PUSH
200010A JSR

proc6 (AD)

= (A7)

glob50 (A5) , A0

(AO) , A0
88 (A0)

proc6 (AD)
DO

lid 7

#3
DIMITEM
lid 8

#3

UNDIMITE

Takes a vRefNum as a parm, then does a GetVollnfo,
and checks the iovAttributes to see if the disk is
locked. Returns a 1 if locked, 0 if unlocked.

Pop off the locked status.

Pop off the original DO.

Or them so that, in effect, the AND instruction below
will be ANDing both DO and D1 with 1.

Check to see if one of the two contains a non-zero
value,

and if so, do not put a 1 in D7 (the string is not
"Copy").

String is "Copy" (meaning that DA Mover will not
allow the Copy to proceed) and from the above code,
we might guess that this is a result of the destination
volume being locked so copying is impossible.

And here is basically the same as above

except that the other list box's volume is being
checked

Push the vRefNum of the volume from which the

selection has been made.
Locked Volume?

Go if not locked.
If the volume is locked, we cannot remove anything
so dim the Remove Button.

Else activate the Remove Button (volume is not
locked).

OK, let's re-cap for a minute. If you look back at MakeAWin, you will note that glob48 and glob49 are set up to refer to information about the
left and right list boxes respectively. We also know that these globs contain information about the volume (and possibly the file) that is being
displayed in the list boxes - since 88 bytes off the start of the pointer is the volume reference number. The above code can be broken into two
pieces: from line SDF4, to lid 5 and from lid 6 to one line past lid 7. The first piece is messy, but the end result is that the destination volume
is tested to see if it is locked, and if so, the copy button text is set to "Copy". Therefore we can now assume that all that messy stuff beforehand
was in essence setting a pointer to the destination list box information. Remember from MakeAWin there was a strange section of code that
seemed to link the two globs to each other? Well, now we see that glob50 is set to one of these two (the one that contains a selection) but
glob50 must also be able to access the other list box's volume to see if it is locked (or to see if copying to it is possible). The second section
checks to see if the volume containing the selection is locked, and if so, Removing is not possible.

5E5E:

5E62:

5E66:
5E68:
5E6GA:
5E6C:
S5E6E:
5E70:
5E74:
5E76:
5E78:
S5ETA:
S5E7E:
5E80:
5E84:
5E86:

S5E8A:

S5E8E:

5E92:

BE6D

6700

4277
A8DS8
285F
2F0C
ABTA
486E
4217
4277
ABAT
486E
A87B
486E
3F07
4EAD

2F2D

486E

A9SF

FEF4

0082

FEFO

FEFO

FF0O

002A

FFF6

FF0O0

-$C 1id 8

2005EE6

A} A}

(
'/"
'.Z'
200FEF0
'B"
'B"
Y..Y
200FEF0
'.{'
200FF00

1o

100048C
—$A

200FF00

CMP.W glob65 (A5) , D7 Once again, we don't know what this glob
means, but we can see what gets skipped if the
branch executes. Once we know what gets skipped,
we have a decent idea what the global means. Keep
in mind that the global is being compared to D7 - the
string resource ID #.

BEQ lid 13 So if glob65 contains the ID # in D7, skip to the end
of the procedure.

CLR.L - (A7)

_NewRgn ; :RgnHandle
POP.L A4

PUSH.L A4

_GetClip ; (rgn:RgnHandle)
PEA vid 1 (A6)

CLR.L - (A7)

CLR.L - (A7)

_SetRect ; (VAR r:Rect; left,top,right,bottom:INTEGER)
PEA vid 1 (A6)
_ClipRect ; (r:Rect)

PEA vid 2 (A6)
PUSH D7
JSR proc5 (A5) Once again, the DrawString procedure. D7 is the

string # and vid_2 returns a pointer to the string.
PUSH.L glob66 (A5) Look at the trap below. glob66 HAS to be a CtlHdI
(Handle to a control object on a dialog),
PEA vid 2 (A6) and vid_2 we already know has the string whose ID #
is in D7. Since D7's string is "Copy", ">>Copy>>",
or "<<Copy<<", we can assume that the control in

question is the Copy Button.
_SetCTitle ; (Ctl:CtlHdl; title:Str255)

5E94: 3B47 FFF4 -sC MOVE D7,glob65 (A5) Here is a clue! glob65 gets set to the string
ID# - now this makes sense. Back up a few lines,
glob65 was compared to D7 and if they were equal,
all this stuff gets skipped. Now glob65 gets set to
D7. 1t looks like the program is checking to see
whether the Copy Button already has the correct
string in it. If not, the above code changes it and
updates glob65 to the new string ID# so that next
time through the event loop, glob65 has the current
ID # of the Copy Button's text.

5E98: 7001 'p.! MOVEQ #1,DO

5E9A: B047 '.G' CMP.W D7,DO0 Remember: if D7 is 1, the string is "Copy", and no
copying is allowed - either because nothing is
selected, or because the destination volume is locked.

5E9C: 660A 2005EAS8 BNE.S 1id 9 If copying is to be allowed, then branch.

5E9E: 3F3C 0002 et PUSH #2 Refers to the Copy Button:

S5EA2: 4EBA A266 200010A JSR UNDIMITE and - wait a second. Notice that this is backward! It
is dimming the copy button if copying is allowed!
I'm not sure why it does this, but look down a few
lines...

5EA6: 6008 2005EBO BRA.S lid 10

5EA8: 3F3C 0002 '?<.." 1id 9 PUSH #2

S5EAC: 4EBA A23A 20000E8 JSR DIMITEM

5EBO: 2F0C v/ 1id 10 PUSH.L A4

5EB2: A879 Ly _SetClip ; (rgn:RgnHandle)

5EB4: 2F0C v/ PUSH.L A4

5EB6: A8D9 L. _DisposRgn ; (rgn:RgnHandle)

5EB8: 7001 'p.! MOVEQ #1,D0 Here we go. Now, if D7 is 1, dim the copy button,
otherwise enable it.

5EBA: B047 '.G' CMP.W D7,DO0

S5EBC: 660A 2005EC8 BNE.S lid 11

S5EBE: 3F3C 0002 oLt PUSH #2

S5EC2: 4EBA A224 20000E8 JSR DIMITEM

5EC6: 6008 2005EDO BRA.S lid 12

5EC8: 3F3C 0002 '?<.. 1id 11 PUSH #2

5ECC: 4EBA A23C 200010A JSR UNDIMITE

5EDO: 206D FFF6 -$A 1id 12 MOVEA.L glob66 (A5),A0 We already saw (from the SetCTitle trap
above) that glob66 is a handle to the Copy button.

S5ED4: 2050 ' p! MOVEA.L (A0),A0 Convert the handle to a pointer.

S5ED6: 43EE FEFO 200FEFO LEA vid 1(A6),Al

S5EDA: 5088 = ADDQ.L #8,A0 Well, according to IM, adding 8 bytes to a pointer to
a control record makes the pointer point to the a
window that the control is in.

5EDC: 22DS8 et MOVE.L (AO0)+, (Al)+ So, move the WindowPtr to vid 1.

SEDE: 22D8 UL MOVE.L (A0)+, (Al)+ and now move the Rect (next parameter in a control
record) into vid 1.

S5EEQ: 486E FEFO 200FEFO PEA vid 1 (A6)

5EE4: A92A vox! _ValidRect ; (goodRect:Rect) This trap tells the Window

Manager not to update the region Rect.
5EE6: 4CDF 10CO 'L...' 1lid 13 MOVEM.L (A7)+,D6-D7/2A4 And, now we are finished.

S5EEA: 4ES5E 'NAY UNLK A6
S5EEC: 4E75 'Nu' RTS

I am not sure exactly what is going on there when it sets the button to the opposite that it is supposed to be, then sets it properly. I might hazard
a guess that this technique somehow gurrantees that the region will get redrawn properly, but I really don't know - nor do I really care, for that
matter. It is pretty clear what this procedure does - it updates the text and active status of the various buttons on the main dialog. Once this is
done, MainEven can let the user make a selection, act upon the selection, and then the whole thing starts over.

SEEE: C841 4E44 4C45 4255 data276 DNAME HANDLEBU, 0, O

Well, that wraps up the intensive assembly listing. Font/DA Mover has many more procedures, but the idea here was to
look at an assembly listing and apply the stuff at the beginning of the tutorial to a real life situation and see if you can
guess what is going on. Next I will discuss the use of TMON, and finally we will look at cracking a real application:
Sorcerer. (I am choosing this because it is easy, and I recently cracked it so it is still failry fresh in my mind.)

Using TMON

TMON, unlike Nosy, is a real-time monitor / debugger. We will be using TMON in several situations: to break into
active dialog windows, to break into programs that Nosy won't decompile properly, or when Nosy produces such a
massive listing that we need to trace the application to see what happens where. To install TMON, just drag the
application and the init into the system folder and restart. The application can be launched to configure it, but you
probably won't need to do this. If you do configure it, make sure you save the changes in a User Area in the System
Folder.

TMON can be entered several ways: System Errors, Debugger traps (this is a great technique for breaking into tough
programs), user specified traps, and by pressing the interrupt button on the side of your Mac. If you lack the interrupt
button, use the Programmer's Key init - this allows you to hold down command and option and press the startup key on
an extended keyboard.

Once in TMON, you are presented with a Menu bar and possibly some windows. A quick note about TMON windows.
They can be resized and dragged only in the vertical directions. To change values in the various windows, click the
insertion bar in front of the value to change and type right over the old value. Pressing Return chops off the line at the
insertion bar, pressing Enter leaves the rest of the line as is. For example, lets say you are changing the address of a
dump window. If it currently reads "Dump From 00000000" and you type 1234 over the first 4 values, you have two
choices. Hitting Return at this point chops off the last 4 zeroes making the effective address 1234 hex. If you were to
hit Enter instead, the remaining zeroes would remain making the effective address 12340000 hex. Here are what the
various menu commands do:

Dump / Cmd-d and Asmbly / Cmd-a

Brings up either a dump window or an assembly window. The dump window lists hex and ascii codes for a block of
memory and the assembly window disassembles memory. The first line allows you to specify where the window will
start its listing: Dump (Assembly) From XXXXXXX where XXXXXXX is an effective address. You can move the
insertion bar right into this line and type over whatever is there. You can enter an address directly, specify a register
(and the window will start from the address contained in the register), or a register indirect (the window will start from
the address in the register, but will remember the register address). Examples: Dump From:

1) 80FFCA Dump listing starts from the absolute address SOFFCA hex. If you
scroll the window, the displayed address will change to the address of the first line in the
listing.

)2 AS Dump starts from the address contained in register AS5. The
address displayed on the Dump From line will be replaced with the address in register
AS. If you scroll, the displayed address will again change to reflect the first line in the
listing, and if AS changes, the window will not change.

3) 0(A1) Dump starts from the address in Al plus zero (in this case). The
displayed address on the Dump From line does not change to the address in A1, rather it
now displays 00000000(A1) indicating that the listing is anchored to the register. As you
scroll, the

zeroes will change to reflect how many bytes from the address in A1 the first line in the listing is - also, if A1 changes,
the window will automatically change to the new value of Al.

The most common entry for an assembly window is O(PC) which says to disassemble from the program counter. Then
as you step through the program, the window automatically scrolls so that the first line is where the program counter is.
The windows list - from left to right - the address, any registers that contain that address (Note the P - for program
counter - next to the first line when you disassemble from O(PC)), the resource the listing comes from if any (assembly
window only), and then either hex and ascii bytes, or disassembled instructions. In addition, the assembly window will
display comments to the right, indicating the destination of branches. Additional dump windows can be activated by
holding down Shift while clicking on Dump in the menu bar - this is the only display that can have multiple windows.
You will find if handy to have, in addition to the dissambly window, a dump window anchored to the A7 register (so
make the Dump From read 0(A7)) so that you can quickly see what addresses are being pushed on the stack. If you
need to see what the actual data of these addresses are, just shift-click Dump to bring up successive dump windows,
and make each window dump from successive addressess (4 bytes each) on the stack. Remember that the stack moves
backwards, so the first thing pushed on the stack will be to the right (in the dump window) of the second thing pushed
on the stack, etc.

Brkpts / Cmd-b

Allows the setting of up to eight breakpoints. Simply enter the address of the breakpoint into one of the 8 slots. To
remove a breakpoint, type a hyphen for the first digit of the address to remove and hit return. Breakpoints cause
TMON to halt execution of the application at the address of the breakpoint. I generally use breakpoints to skip out of
long loops. For example, if you are stepping through a section of code and you find a DBRA loop (usually moving a
section of data) where the data register has some god-awful value like 63 (often used to move strings), enter a
breakpoint at the address of the instruction immediately after the DBRA and then exit. TMON will break execution
after the loop has finished.

Regs / Cmd-r

Displays the 16 registers, PC, and status flags, any of which can be modified by typing right over the current values.
The flags are displayed as the letter that I have been using - C for Carry, Z for Zero, etc. When the letter is capitalized,
the flag is set. To change the value of the flag, simply change the capitalization.

Heap / Cmd-h

Displays memory blocks in the application heap zone. Basically this window lists all allocated blocks of memory in
the applications heap zone (in the form of the pointers to the blocks), the size of the block, a digit that is meaningless to
me, and the blocks status - either 1) Free, not allocated to anything yet, 2) Nonrel, non-relocatable, 3) Handle at,
relocatable block with handle at the address specified, or 4) INVALID which means there is a big problem somewhere.

File / Cmd-f

Brings up a window listing all open resource files by file reference number. In most cases, the last number in the list
refers to the System File. Entering a file reference number after the Resource file # prompt lists the files resources and
where in memory they are. From left to right, the information displayed is: Resource type, Resource ID #, Attributes,
location in memory. Attributes are as follows: R = System reference, H = Load into system heap, P = purgeable, L =
locked, T = protected, 1 = pre-loaded (loaded at startup time), W = write into resource file. To return to a list of file
reference numbers, click the insertion bar before the file number you previously typed in and hit return.

Exit / Cmd-e

Returns control to the Mac. Execution starts from the current value (which can be modified, of course, via the Regs
window).

Gosub / Cmd-g

Same as Step (below), except that all JSR and BSR instructions are treated as a single instruction and the subroutine is
called invisibly to you. In other words, this command executes exactly as if you had set a breakpoint immediately after
the JSR or BSR and then exited. I often use this command the first time through a program to quickly find which JSR
calls the subroutine that bombs. If you look at the Font/DA Mover listing above and condsider the Da Mover portion,
imagine this as a protected program that Nosy won't handle. You are presented with several subroutines which you
certainly don't want to spend valuable time tracing. So, you Gosub each one until you get a bomb. Then you know
which one you need to spend time tracing.

Step / Cmd-s

Executes the instruction pointed to by the PC. This command allows you to execute a program one instruction at a time
with one limitation (or boon) which is that traps are executed as if they were a single instruction. Use the Trace
command to step through the actual ROM trap code. All windows that are affected by the executed instruction are
updated automatically.

Trace / Cmd-t

Same as Step, except that ROM traps will be followed into their ROM code. You will never need to do this to crack a
program, however if you want to see what a trap is really doing, use this command.

Num / Cmd-n

Brings up TMON's calculator. Any expression (almost) will be evaluated and displayed. For example, entering a trap
name will return the trap number; entering a mathematical expression (or a number) will return the result in hex and
decimal, etc. There are a million variations on this, non of which I have ever used, so if you have a question, get in
touch with me for more info.

User / Cmd-u

This has a wealth of handy commands, but my desctiptions my descriptions will be limited to commands that I have
used. There are three different screens associated with the User window: A00O trap functions, Control functions, and
Memory functions. To switch pages, click on the line that reads Toggle Pages and press return until you arrive at the
page you desire.

Control Functions:

Look for labels: Unknown.

Label table Unknown.

Label add/remove Unknown.

Label file load Unknown.

Registers Unknown. Has something to do with TMON's internal registers.

Leave TMON: queue... Similar to Exit, except that TMON will trap out all events and regain control when you

click the mouse. When TMON regains control, the previously generated events will be
available in the event queue. To activate this function, click on the Leave TMON... line
and press Return.

Leave application...

Shut Down

Memory Functions:

Block Move

Block Compare

Fill

Find

Template

Use this function when your application system bombs. Using 0 as a parameter, attempts
to quit to the active shell (usually the Finder), using 1 will attempt to re-launch the
program. If you are in a program (not necessarily one you are cracking) and it system
bombs, you will dive into the monitor. Use this function with a parameter of 0 and
usually the app will quit to the Finder leaving any other open applications running
normally.

If the above does not gracefully exit to the Finder, you may need to use this function.
The higher the number of the parameter you use, the safer your shutdown will be. If you
have to resort to 0 (re-boot), you will have the long wait for boot up associated with
turning the computer off then on.

Moves blocks of memory. Requires three parameters: source address, destination
address, and length. Enter these three address after one another on the line and hit return.

Compares blocks of memory using the same three parameters as the Block Move
command. Any differences will be displayed as "Mismatch at xxxx/yyyy" where xxxx is
the address of the source and yyyy is the address of the destination where the blocks do
not match.

Fills a block of memory with a specified value. Takes four parametes with the fourth
being optional: beginning address, ending address, fill value, and optionally, the size of
the fill value - 1 for byte fill, 2 for word fill, and 4 for long word fill.

Finds a specified value in a specified range of memory. Takes four parameters: search
value, search value size (same as size from Fill command above), start address and end
address. If any matches are found, they will be displayed between the curly braces.

Displays a memory location as if it were a Mac data structure, showing you all the
current values. TMON currently knows only four data structures: WindowRecord,
ControlRecord, TERecord, and ParamBlock (see IM for descriptions of these). Clicking
on the Template line hitting Return will cycle through these four templates. Template
takes one parameter, an address. So, after finding the structure you wish to display, enter
an address that contains a structure of that type and hit return. TMON will list all current
values for the fields of that structure. Note that information will be meaningless unless
there is actually a structure of the desired type at the address you specify. This command
could be helpful in looking at key disk checkers by allowing you to look at the
ParamBlock the program is currently using to read the disk - although I have never used
this.

Stack addresses

Stack crawl

Load resource

Print

Attempts to recognize as labels the supplied address. This function defaults to an address
of SP - stack pointer. To use this, just click to left of SP and hit return. The function will
then look at the first address on the stack and see if it matches any labels that it currently
knows. For example, right after a JSR, the stack contains the return address. If TMON k
knows a label for the return address (and it will if there was a label to the left of the JSR
in the assembly window) then using the Stack Addresses command will display the label
in curly braces. Hitting return repeatedly will then move up the stack, analysing each
successive stack address. Click in front of the SP and hit return to reset the command to
the original stack pointer.

Attempts to find the return address of a procedure that has a currently active stack frame.
Remember that most compiled programs use the LINK and UNLK instructions to set up
stack frames to temprarily store local variables. If you know what register is being used
as the stack frame pointer (A6 is the only one I have ever seen and this is the default
value TMON uses), then the Stack Crawl can use that register to analyse the stack and try
to determine the return address and display it in the curly braces.

Loades the resource specified by the two parameters (type and id #) into memory and
displays the address of the resource in the curly braces.

Allows you to print listings longer that contained in the active window. Clicking on the
Print line and hitting return toggles the print mode between Dump, Assembly, File, and
Heap. Once the mode has been selected, the print command needs a start and end
address. Type these in, hit return, and TMON will print the desired output to the serial
port (meaning that you cannot use a laserwriter, but you can use an imagewriter.)

A000 Trap Functions:

Trap record

Record

Trap

Heap

Trap discipline

Unknown. Allows you to record any traps called by the program, but requires a lot of
complicated set up.

Unknown. Used to allocate a table for trap record (above).

Unknown. Used by programmers to test the heap anytime a trap that affects the heap
zone is called. We don't need this to crack.

Unknown. Similar to Trap but doesn't wait for a trap to execute. We don't need this one
either.

A programmer's feature. Trap discipline is a means of checking traps for faulty
parameters. Select a range of traps and a PC range (see Trap Intercept below) and TMON
will check all traps within that range. If it finds a trap with questionable

parameters, the monitor will be entered. There are two strengths of discipline: lenient and strict. To toggle these, click
on the trap discipline line and hit return.

Trap checksum Unknown. Another function that programmers would use to check application problems.
Since we are cracking an application that already works, we don't need this one.

Checksum Unknown. Used to specify the checksum for Trap Checksum.

Trap intercept Allows you to specify a trap or range of traps that, when encountered, will cause the
monitor to be entered. Simply click on the line and enter the trap name WITH a leading
underscore, a space, and then the second trap. This specifies a range of traps to look for,
the range being in numerical order of trap numbers. If only one trap is specified, only
that trap will be checked. Use this to catch a program that uses a dialog to prompt for a
serial number. If the trap entered is ModalDialog, the monitor will be entered just
before the dialog is drawn. Optionally, a PC range may be entered after the trap range.
This would specify that TMON regain control only if the specified trap is encountered
within the specified PC range. I have never used a PC range.

Trap signal Similar to Trap Interrupt, except that once the trap range and optional PC range have been
entered, the user must hit the interrupt switch to enter the monitor. Once the interrupt
switch (or Programmer's Key) has been pressed, TMON will continue execution until a
trap within the specified range has been encountered.

Options / Cmd-o

Allows setting of seven monitor global functions. I am not exactly clear what the various settings mean, so I jus leave
them all on.

Print / Cmd-p

Causes the active window to be dumped to whatever port has been set during setup (achieved by launching the TMON
application). This prints a window's contents only! To get long printouts, use the print command in the User Window.

How to crack Sorcerer

We are now going to look at a typical key-disk protection scheme. The important concepts to grasp here are how to
quickly isolate the protection, and then how to remove it. Don't worry too much about the particulars, unless you
happen to have a copy of Sorcerer you want to crack.

First off, how do we know that it is protected? Dumb question, but this is really important to beginning the crack.
With Sorcerer, we note that when launched from the hard drive, it brings up a dialog box (or alert) requesting the key
disk. So the logical place to start is with Resedit to try and figure out what resource the program is using to display the
alert.

After you open the application in Resedit, we see the following:

£[=== Sorcerer EEEI
ik
% E‘I aHoU LA % E‘I —
mae UlS
E arz E
EMDL CODE FREF
CIRELT riLe
OO e (222
R
[CH* INFO FENL
— |u=r||.:=_|
I I @
5TE ' IMCr Er

Well, there are no ALRT or DLOG resources, so the program is generating its own dialog internally. If there was a set
of ALRT or DLOG resources, we would quickly scan them and try to determine which was the one that the program
displays to request the key-disk. If we could locate the ID # of the correct DLOG resource, we would go into Nosy and
bring up the Traps ref map, see which procs called GetNewDialog, or Alert (if the resource in question was ALRT), and
then check all the procs Nosy listed to see which one called GetNewDialog with the ID # we had found in Resedit.

Often you will find that there are DLOGs or ALRTSs, but none of them have the correct message. If this is the case, then
we would be in the same spot we are right now. The next thing to consider is that the string "Please Insert the Original
Disk" (or whatever the string is) has to come from somewhere. You can try to locate it in Nosy, but often the string will
be in a string resource. Look at the Resedit window above, and note the STR resource. Let's take a look:

Jgﬂg STR 1D = 256 from Sorcerer §—|

o>

The String Flease insert your Master Disk

Oata i3

G}

Perfect! There is the culprit. So, all we have to do is find the part of Sorcerer that uses STR resource # 256. Since
there are several ways to load a string, you might want to forget the Traps ref map and start tracing the program. If the
program is huge, this might not be the way to go. If you look at the Traps ref map for Sorcerer, you would eventually
find that proc108 calls the trap GetString. This would be an excellent place to start. Otherwise you might just find the
proc called Sorcerer and start tracing there...An important note: tracing programs from start to error sucks. If you can
figure out which trap is causing the problem, then by all means do so. If you are not familiar enough with the various
traps, then you might well have to trace. Get a hold of IM and learn the Dialog Manager and the Resource Manager!

OK, let's start with the procedure Sorcerer:

D50:

D50:
D54 :
D58:
D5A:
D5SE:
D62:
D66:
D6A:
D6C:
D70:
D72:
D76:
D78:
D7C:
D7E:
D80 :
D82:
D84 :
D86:
D8A:
D8E:
D92:
D94 :
D98:

D9A:

A quick scan should reveal that possible problem areas are proc39, proc41, procl, proc108, and proc54 since these are procedures that we can't
see from this listing which is normal enough by itself. Luckily, if you were to look at the first three procs called, they are very short and very
benign. If these were long, complex procedures, I might seriously consider going into TMON and setting a Trap Intercept to pick up _InitFonts
so that TMON would grab control of the program early. Then when I launch Sorcerer, if TMON breaks in then the error is later in the program,
but if Sorcerer bombs, then the error was before the InitFonts. That is a quick way to locate the problem.

4EBA
4E56
2C5F
4E55
9FED
4EBA
41ED
2F08
4EBA
A8FE
3F3C
4267
4EBA
A912
A9CC
4217
A97B
A850
4EAD
4EBA
4EBA
4E5D
4EBA
4E75

4ESE

004cC
0000

FCB6
0010
0042
FCB2
F292
FFFF

F49A

0092
0390
0156

000E

1000D9E Sorcerer
'NV. .
'NU. .
$10
1000DAG
-$34E
V/.V
1000000
o
lBgl
1000214
IB'I
l'{l
I.Pl
20003F6
100111cC
1000EE6
YN]Y
1000DA4
lNul

data20

=proc38

QUAL Sorcerer ; b# =59 s#l
JSR proc39

LINK A6, #0

POP.L A6

LINK A5, #-$34A
SUBA.L glob27(A5),AT7
JSR procédl

LEA glob2 (A5) , A0
PUSH.L AO

JSR procl
_InitFonts

PUSH #SFFFF

CLR - (A7)

JSR FlushEvents
_InitWindows

_TelInit

CLR.L - (A7)
_InitDialogs ; (resumeProc:ProcPtr)
_InitCursor

JSR procl08 (AD)
JSR procb54

JSR % TERM

UNLK A5

JSR proc4o0

RTS

DC.B 'N*Nu'

So, let's take a look at the next procedure, proc108:

3F6:

3F6:

3F6:
3FA:
3FE:
402:
406:
408:
40C:
410:
414

416:
418:
41C:
41E:
422
426:
428:
42A:
42F :
432:
436:
438:
43A:
43E:
440:
442
446:
448:
44C:
44F :
452
456:
458:
45C:
460:
462:
466:
468:
46C:
470:

4A6F
4E56
48E7
41EE
2848
486E
486E
486E
A9F5

4267
41EE
2F08
486E
4EAD
3E1F
4267
486E
3F2E
3F3C
2F0C
4267
4EBA
181F
4267
3F2E
2F0C
4EBA
101F
0A0O0
6700
4267
3F3C
3F2E
2F0C
4EBA
101F
0A00
6700
4267

EBEG6
FBEG6
0F18
FEOO
FBFA

FBFO
FBF6

FCFA
FBF2
0052

FBFA
FBF2
0010

FDBE

FBF2

FEDS8

0001
00A0

0002
FBF2

FFOC

0001
0086

'Jo.."
'NV..'T
'H...'
200FEQO
\} (Hl
200FBFA
200FBFO
200FBF6

1 1

ngv
200FCFA
l/' v
200FBF2
1000162
LS
lBgl
200FBFA
200FBF2
oLt
l/. v
lBgl
20001FA
lBgl
200FBF2
l/' v
2000322
v
20004Fr4
lBgl
G
200FBF2
v/. v
2000370
20004F4
lBgl

vem 1
vem 2
vem 3
vem 4
vem 5
vem 6
vem 7

;-refs -

procl08

QUAL

VEQU
VEQU
VEQU
VEQU
VEQU
VEQU
VEQU
VEND

1/proc

TST
LINK
MOVEM. L
LEA
MOVEA.L
PEA
PEA
PEA

_GetAppParms ;

CLR
LEA
PUSH.L
PEA
JSR
POP
CLR
PEA
PUSH
PUSH
PUSH.L
CLR
JSR
POP.B
CLR
PUSH
PUSH.L
JSR
POP.B
EORI.B
BEQ
CLR
PUSH
PUSH
PUSH.L
JSR
POP.B
EORI.B
BEQ
CLR

procl08 ; b# =194 s#2 =procl08

-1040
-1038
-1036
-1034
-1030
=774

-512

37 1/Sorcerer

-$141A (A7)

A6, #-S41A

D4-D7/A3-A4, - (A7)

vem 7 (A6) ,A0

AQ, A4

vem 5 (A6)

vem 1 (A6)

vem 4 (A6)

(VAR apName:Str255; VAR apRefNum:INTEGER;
VAR apParam:Handle)

- (A7)

vem 6 (A6),A0

A0

vem 2 (A6)

GetVol (AD)

D7

- (A7)

vem 5 (A6)

vem 2 (A6)

#16

A4

- (A7)

procl03

D4

- (A7)

vem 2 (A6)

A4

procl05

DO

#1,DO0

lem 2

- (A7)

#2

vem 2 (A6)

A4

procl06

DO

#1,D0

lem 2

- (A7)

472: 3F3C 0001 el PUSH #1

476: 3F2E FBF2 200FBF2 PUSH vem_2(A6)

47A: 2F0C v/ PUSH.L A4

47C: 4EBA FEF2 2000370 JSR procl06

480: 101F oLt POP.B DO

482: 0A00 0001 ot EORI.B #1,DO0

486: 676C 20004Fr4 BEQ.S lem 2

488: 42A7 'B." CLR.L - (A7)

48A: 3F3C 0101 S G PUSH #257

48E: 42A7 'B." CLR.L - (A7)

490: T70FF 'p.! MOVEQ #-1,DO0

492: 2F00 /! PUSH.L DO

494: A9BD oLt _GetNewWindow ; (windowID:INTEGER; wStorage:Ptr;
behind:WindowPtr) :WindowPtr

496: 265F ‘s ! POP.L A3

498: 2FO0B /! PUSH.L A3

49A: A873 '.s' _SetPort ; (port:GrafPtr)

49C: 3F3C 0010 el PUSH #16

4A0: 3F3C 001cC G PUSH #28

4A4: AB93 oLt _MoveTo ; (h,v:INTEGER)

406: 4267 'Bg' CLR - (A7)

4A8: A887 Yo _TextFont ; (font:FontCode)

4AA: 42A7 'B."' CLR.L - (A7)

4AC: 3F3C 0100 et PUSH #256

4B0: A9BA L _GetString ; (stringID:INTEGER) :StringHandle

4B2: 2C1F tyu! POP.L D6

4B4: 2046 'F! MOVEA.L D6,A0

4B6: 2F10 /! PUSH.L (AO)

4B8: AB884 L. _DrawString ; (s:Str255)

4BA: 4267 'Bg' CLR - (A7)

4BC: 42A7 'B." CLR.L - (A7)

4BE: 3F3C 0001 el PUSH #1

4C2: 4EAD 002A 1000186 JSR Eject (A5)

4Co: 3E1F >0 POP D7

4C8: 486E FBF4 200FBF4 lem 1 PEA vem 3 (A6)

4CC: 4EBA FEEE 20003BC JSR procl07

4D0: 4267 'Bg' CLR - (A7)

4D2: 3F2E FBF4 200FBF4 PUSH vem_3(A6)

4D6: 2F0C v/ PUSH.L A4

4D8: 4EBA FEA48 2000322 JSR procl05

4DC: 1A1F oLt POP.B D5

4DE: 4267 'Bg' CLR - (A7)

4EQ0: 42A7 'B.! CLR.L - (A7)

4E2: 3F2E FBF4 200FBF4 PUSH vem_3(A6)

4E6: 4EAD 002A 1000186 JSR Eject (A5)

4EA: 3E1F > POP D7

4EC: 1005 U MOVE.B D5,DO0

4EE: 67D8 20004cs8 BEQ lem 1

4F0: 2FO0B /! PUSH.L A3

4F2: A914 L. _DisposWindow ; (theWindow:WindowPtr)

4F4: 4CDF 18F0 'L...! lem_2 MOVEM.L (A7)+,D4-D7/A3-2A4

4F8: 4ESE NN UNLK A6

4FA: 4E75 'Nu' RTS

4FC: "o, ! data76 DC.W $8100,8,0,$4FC, SFC00,0

The first thing to do here is to quickly scan for trap names. There are quite a few, but one should stick out. Remember that we are looking for
some reference to STR #256. Note the GetString trap. Immediately before the trap is a PUSH #256...that's our guy! So, at this point, we know
where the string is being loaded and drawn. Since this procedure is called from the Main procedure, we can bet that the key-disk check is also
in this proc. Note that this is not always the case - often when you find the procedure that loads the dialog or string, you need to back trace to
find out where the actual error generator is located. That is where the Refs line (right below the VEND) in the listing comes in handy. Note
that this proc is called by not only Sorcerer, but also by proc37. This might mean that the program checks the key-disk later in its execution.
But if you load up proc37, you would find that it simply Unloads the segment so it is harmless.

At this point, all we need to do is disable the disk-check. So, start scanning down the listing and ask yourself "Where is a branch that will skip
over the GetString trap?". If you find that branch and make it always branch then odds are the program is cracked. Nosy will help out here.
We are looking for a spot in the listing that a branch can jump to that will skip over the error. We have two choices in this listing: lem 1 and
lem 2. Check out lem 1, and you will see a couple of problems with it. First of all, see what piece of code branches to it. There is a JSR
Eject, then a test, and a BEQ lem_1. Also note that there is a DisposeWindow after it. We might guess that DisposeWindow is disposing the
error dialog. We might also guess that lem 1 is being used as a loop to eject bad disks and request key-disks. Well, let's give lem_ 2 a shot.
Now this one looks good - it is located right down at the procedures exit, so, if something is branching here, all the above stuff gets skipped.

So, just select lem 2 and hit cmd-f to let Nosy find all the references to lem_ 2 in the listing. Line 452 is the key. Note, DO gets a result from
an unknow procedure, then is EORd with 1, and then the branch occurs. It sure looks like changing that branch from BEQ to BRA would
gurrantee that the error never occured. Let's try it. From the assembly instruction listing, we see that BEQ is 67, and BRA is 60. So, look at
the first line in the above listing and we see that it is segment 2. So, open CODE resource 2 in Resedit, and skip down to address 456
(remember, take the Nosy address and add 4 to find the Resedit address).

IECI= CODE ID = 2 from Sorcerer

Q00435 0010 2FOC 4267 4EBA 00/0BgH|
Q00440 FOEE 131F 4267 3FZE De00BgQY.
000445 FEFZ ZFOC 4EBR FEDS 0OO0/0M]) 00
Q00450 101F 0RO aoo1 6700 000000g0
Q0045 00R0D 4267 3F3C 0002 0OfBg?<0O0
Q00450 IFZE FEF2 2ZFOC 4EBA 7. 00/0M[
Q00462 FFOC 101F OROO 0adl 00000000
Q0040 G700 0026 4267 3IF3C gOOUBg?«
Qo047 Qo011 2FZE FBFZ Z2FOC O0%7.00/0
aoo4a0 4EBA FEFZ 101F OADD M/ ODOOOO
aoo4as Q001 676C 42A7 3F3C O0glBGAT«
Qao490 0101 42A? 7OFF ZFO0 OOB(3p0/0
Q004955 A9ED 265F 2F0B ASY3 a0&_s0Rs
Q004A/0 3F3C 0010 3F3C 001C *<007<00

There it is, on line 450. See the 67007 That sure matches what we find in Nosy, so that is our guy. Change the 67 to 60 by clicking to the right
of the 67, hitting backspace or delete, and typing 60. That's it! Now quit Resedit and save changes. Launch the program and the protection is
gone!

Let me quickly mention one last thing. The above crack involved looking for a branch that would skip over the problem area, and making
damn sure that that branch always executed. But suppose that the program was setup so that after the disk check, the program branched zo the
error section. In this case, we would want to make sure the branch never executed. There are two ways to do this. First off, you can change
the branch to its logical opposite - BCC to BCS, BNE to BEQ, etc. That way, the condition that triggers the error will now trigger the opposite,
and run properly. The second method is to simply replace the trap with a NOP. That way, the branch never executes no matter what happens.
Look for upcoming material on more specific cracking methods and more actual cracks.

later - The Shepherd

Beta Notes: 10/17/91

The following bold entries constitute a tentative outline for topics to dicuss in detail. Some of these topics will require a fair amount of
research on my part - in particular, the Eve and Encryption sections will take some time. After this section come the live cracks. These
represent an attempt to take a novice cracker through every step of the cracking process detailing choices and decisions that I would make as I
go and why I would make them.

Any feedback would be greatly appreciated - especially from any novice crackers who find parts of this document incomprehensible. Note that
this is a rough draft - there are bound to be errors although hopefully no logical ones (just syntactical and/or spelling).

Determining where to start looking

1) Types of protection
a) Serial number schemes
b) Registration codes

¢) Network serial checks [AppleTalk driver stuff]

d) Hardware plugs - see below
e) Encryption - see below
f) Time stamps

2) Key disk

How to break into programs

1) Trap interrupts
a) Dialog/Alert traps
b) MenuSelect
¢) InitFonts etc.
2) Manual entrance of TMON [Good luck]
3) Automatic TMON entrance via code modification [Debugger trap insertion]
a) Determining an address with Nosy

b) Determining an address from the Jump Table

¢)

Using TMON, Nosy, and ResEdit together

1) Determining address offsets
2) Nosy vs TMON
a) Why Nosy "feels better"

b) Why TMON is virtually omniscient

TMON Tricks

1) TMON tricks with register values, flags, and instruction modification
2) One step ModalDialog hassles [Serial number schemes]

3) TMON Pro shortcuts

Determining the type of crack to apply

1) Bypasses vs cracks
2) Finding the key code
3) Branch switching
a) Mention something about branch op-codes - 2 and 4 byte instructions and offsets
4) Flag/variable modification

5) Code modification

Everything you always wanted to know about the CODE 0 Jump Table.

1) What it is and how it works

2) Locating an entry point

3) Modifications

Hardware plugs

1) General tips [Device Manager stuff]

2) Eve bullshit

Encrypted Code

Unless you are one hell of a genius at cryptology and have lots of time to kill, the encrypted CODE resources will have to be de-crypted and
written back to the program. Here is why: to decrypt itself, a program will usually either take a known seed number and use it on each
encrypted byte of the code or else it will start with some byte in the code and do a forward decrypt, i.e. the first byte decrypts the second byte,
the new second byte decrypts the third byte, and so on. A simple method might be to have some code that looks like this:

MOVE #1000,D0

LEA encryptedshit,A0
LEA encryptedshit-1,A1
loop1 EOR.L (AD)+,(A0)+

DBRA DO,loopl

encryptedshit Here is where the encrypted gibberish begins.

This is a simple example, but note how it functions. DO gets the number of longwords to decrypt, A0 is the destination (where the decrypted
stuff will go - which is right back over the encrypted stuff) and Al gets the decrypting key which is the long word that was previously
decrypted. Then the code simply loops DO times writing over the encrypted code with the decrypted code. After this code has finished, the
program continues execution right where the encrypted (and now decrypted) code begins. Now cosider: somewhere in the encrypted stuff is
the error check that you have to modify. This will be simple enough to locate assuming that you can run the decryption routine and then
immediately regain control in TMON. The problem is that when you go to modify the error check so that it always passes, the modification
screws up the decryption routine. This is because the decryption routine requires the exact original values to run properly since these values are
the keys that the code uses. So a crack using traditional methods requires that you not

only change the error branch, but that you also change every other encrypted value such that the decryption routine still runs properly - no
small feat!

A much more feasable method would be to decrypt the code, make the necessary modifications to the error routine, and then disable the
decryption routine (just branching around it would do) and writing the whole mess (un-encrypted) back to the original code resource.

So much for the theory, now if I could just crack one of these suckers...

Live Cracks

MultiClip 2.0

This program uses a network checking algorithm to determine whether multiple copies with the same serial number are currently running - if
you don't use this program on a network, you will never see the error.

Step 1: Where to start looking.

There are actually several good places to begin looking for the protection (especially if you have already cracked it - but I will assume that you
have not). First of all, since the program scans the network, it is probably using the Open Trap somewhere early in its code to to access the
Appletalk driver. Second, it displays an error dialog (or alert) so we could open it up in Resedit, find the error dialog (and note its ID # for later
use) and then Nosy it and look at procedures that call ModalDialog or one of the Alert traps to try and find the one that displays the dialog with
the proper ID #. Third, we could have TMON trap either 1) ModalDialog if it is a dialog or 2) StopAlert, CautionAlert or NoteAlert if it is an
Alert and begin tracing from that point backwords. Fourth, we could just Nosy it and start from the top (the slow way).

Whenever a program displays an error dialog (not a serial number dialog which seems to be in vogue these days) I almost always find the ID #
of the dialog or alert and begin looking at procs in Nosy, so let's start there. In Resedit, we note that it is Dialog (and not Alert) #128 that is the
problem. On to Nosy. After Nosy analyzes the INIT resource, open up the Trap Refs List under the Display menu and scroll down to
GetNewDialog. Here you will find two listings: ASKNAME and PUTREGISTERDLOG. Since there are only two we can quickly check them
both out (if there were a bunch, I would probably try a different method). First let us look at ASKNAME - here is the listing down to the

GetNewDialog:

42BA:
42BA:
42BA: 4E56 FFE6
42BE: 48E7 0318
42C2: 2C2E 0008
42Co6: 42A7
42C8: 4EBA E642
42CC: 285F
42CE: 486E FFF8
42D2: A874
42D4: 4277
42D6: 302C 001E
42DA: DO7C 0014
42DE: 3F00
42E0: 42A7
42E2: T0FF
42E4: 2F00

42FE6: A97C

QUAL ASKNAME ; b# =184 s#l1 =proc54

vdu 1 VEQU =26

vdu_ 2 VEQU -18

vdu 3 VEQU =12

vdu_ 4 VEQU -10

vdu 5 VEQU -8

paraml VEQU 8

funRslt VEQU 12

VEND
;-refs - com_43 MYFILTERFORNAME

'NV..' ASKNAME LINK A6, #-S1A
"H...' MOVEM.L D6-D7/A3-A4,- (A7)
2000008 MOVE.L paraml (A6),D6
'B." CLR.L - (A7)
100290C JSR procl9
(L POP.L A4
200FFF8 PEA vdu_5(A6)
.t _GetPort ; (VAR port:GrafPtr)
'B.' CLR.L - (A7)
'0,.." MOVE 30(A4),DO
L ADD #20, DO
et PUSH DO
'B.' CLR.L - (A7)
'p."' MOVEQ #-1,D0
V. PUSH.L DO

behind:WindowPtr) :DialogPtr

_GetNewDialog ; (D1gID:INTEGER; wStorage:Ptr;

The first thing to do is to locate the _GetNewDialog and determine its associated parameters: actually all we care about is the first parameter, the ID #. Tracing
backwords, we see that -1 is the third parm, 0 is the second parm, and 30(A4) + #20 (from the ADD #20,D0) is the first parm. Well, we have a problem here.
Instead of a nice plain ID # being passed to GetNewDialog, the ID # is hidden on the stack frame somewhere. At this point it is best to mark this proc as
indeterminite and go on to the next one. If we must come back to this one then we will have to figure out if ID #128 is valid for this proc and go from there.
So let us look at PUTREGISTERDLOG

33AC:

QUAL

PUTREGISTERDLOG ; b# =141 s#1 =proc35

vdb 1 VEQU -286

vdb_2 VEQU -278
vdb_3 VEQU -276
vdb_4 VEQU -274
vdb_5 VEQU -272
vdb 6 VEQU =270
vdb_7 VEQU -268
vdb 8 VEQU -264
vdb_9 VEQU -262

vdb 10 VEQU =256
paraml VEQU 8

33AC: VEND

;-refs - INITI1

PUTREGISTERDLOG
33AC: 4E56 FEE2 'NV. . LINK A6, #-S11E
33B0O: 2F0C LV PUSH.L A4
33B2: 206E 0008 2000008 MOVEA.L paraml (A6) ,A0
33B6: 43EE FF0O0 200FF00 LEA vdb 10 (A6),Al
33BA: 703F 'p?! MOVEQ #63,D0
33BC: 22D8 te 1db 1 MOVE.L (A0)+, (Al)+
33BE: 51C8 FFFC 10033BC DBRA DO, 1db 1
33C2: 42A7 'B." CLR.L - (A7)
33C4: 3F3C 0080 el PUSH #128
33C8: 42A7 'B." CLR.L - (A7)
33CA: T70FF 'p.! MOVEQ #-1,D0
33CC: 2F00 LV PUSH.L DO
33CE: A97C U _GetNewDialog ; (D1gID:INTEGER; wStorage:Ptr;

behind:WindowPtr) :DialogPtr

Once again, find the GetNewDialog and determine the parms. Here we have -1 for the third, 0 for the second, and lo and behold, 128 for the first. This is
definately our procedure. Note that this is an extremely easy example as no attempt has been made to disguise the ID # - it is clearly 128, the value we have
been looking for all along.

Determining how to implement the crack.

The obvious place to start looking is just before the error dialog has been loaded. Here is that section of code from the above procedure:

ldb 1

LINK A6, #-S11E
PUSH.L A4

MOVEA.L paraml (A6),AQ
LEA vdb 10 (A6),Al
MOVEQ #63,D0

MOVE.L (A0)+, (A1) +
DBRA DO, 1db 1
CLR.L - (A7)

PUSH #128

CLR.L - (A7)

MOVEQ #-1,DO0

PUSH.L DO
_GetNewDialog

Next comes the code we just looked at

As we look at this code, keep in mind what it is that we are looking for. We know that the program is capable of loading without this error, so somewhere it has
to be checking the network and then either branching to the error code (if it detects a copy of itself) or else branching around the error code. So we need to find
the branch that is causing this segment of code to execute. A quick scan of the code that precedes the error dialog code should reveal nothing of

interest. A Link followed by a 63 word Move Loop - no branches of any consequence whatsoever. If you are wondering why we can immediately eliminate
the DBRA DO,ldb1 (after all, it is a branch) then ask yourself this: 1st, where does the branch go? Answer: to the line above the branch instruction. 2nd, what
(if any) conditions is it checking? Answer: it checks to see if DO (an obvious loop counter in this case) is equal to zero. If the branch does not either 1) branch
directly to the error code (in this case it would have to be branching to the CLR.L -(A7)) or 2) branch around the error code (somewhere after the
GetNewDialog and the ensuing ModalDialog and probably even an ensuing DisposeDialog) then the branch is almost certainly a bad candidate. You
particulaly should be able to immediately eliminate loop terminator branches like the one above.

Well, since we have eliminated the only branch in this procedure above the GetNewDialog, we will have to look elsewhere. The next obvious place to look is
in the procedure that called this one. Again Nosy makes this a snap. Take a look at the line right above the code listing that read refs - INIT1. The refs line
tells you every procedure that calls the one you are currently looking at. Luckily, there is only one, so let us look at it next. Since this is a long procedure, I am
only listing the section that surrounds the JSR PUTREGISTERDLOG line. I should also mention that I am writing this with a copy that I cracked a while ago
and in un-cracking it for this document, could not remember exactly what the changed code was. I will show you where your code listing might differ from
mine below:

196: 4268 0004 'Bh.." CLR 4 (A0)

19A: 4228 0006 'B(..' CLR.B 6 (A0)

19E: 4228 0007 'B(.."' CLR.B 7 (A0)

1A2: 43FA 036E 1000512 LEA data2,Al ; len= 1
1A6: 45E8 0009 'E..L LEA 9(A0) ,A2

1AA: 4EBA 0392 100053E JSR proc2

1AE: 43FA 03A2 1000552 LEA datad,Al ; "Multi'
1B2: 4EBA 038A 100053E JSR proc2

1B6: 43FA 03AC 1000564 LEA data7,Al ; len= 2
1BA: 4EBA 0382 100053E JSR proc2

1BE: 4A6E FFEC 200FFEC TST Vab72 (AG)

1C2: 6756 100021A BEQ.S lab 13

1C4: 4FEF FFFE 0...t LEA -2(A7),A7

1C8: 2F2E FFEE 200FFEE PUSH.L vab_ 3 (A6)

1CC: 4EBA 2C88 1002E56 JSR proc29

1DO0:

1D2:

1D4:

1D8:

1DA:

1EO0:

1E6:

1EC:

1EE:

1F2:

1F6:

1F8:

1FC:

1FE:

200:

202:

204:

206:

208:

20A:

20E:

212:

216:

21A:

21C:

21E:

220:

226:

22A:

22C:

301F

6646

4FEF

204F

317C

216E

317C

A004

4FEF

206E

AQl1F

486D

AB6E

ABFE

A912

A9CC

42A7

A97B

A850

42B8

487A

4EBA

4EFA

4227

A99B

4277

2F3C

487A

ASAl

1F3C

FFCE

FFF6

FFEE

00FC

0032

FFEE

FFFC

0A6C

0302

3198

0316

4452

2156

0001

0018

001E

001A

5652

LN

100021A

L
200FFEE

L

'0..2"

200FFEE

$A6C
1000512
10033AC
100052E
'B'! lab 13
g
' /<DRVR'

100237E

POP DO
BNE.S lab 13
LEA -50 (A7) ,A7

MOVEA.L A7,A0

MOVE #SFFF6, ioCRefNum (A0)
MOVE.L Vab_3(A6),iOSEBlthr(AO)
MOVE #252,CSCode (A0)

_Control ; (A0 | IOPB:ParamBlockRec) :DO\OSErr

LEA 50 (A7) ,A7
MOVEA.L vab 3(A6),A0
_DisposPtr ; (AQ/p:Ptr)
PEA globl (A5)
_InitGraf ; (globalPtr:Ptr)
_InitFonts

_InitWindows

_Telnit
CLR.L - (A7)

_InitDialogs ; (resumeProc:ProcPtr)

_InitCursor

CLR.L DeskHook

PEA data?2 ; len= 1
JSR PUTREGISTERDLOG

JMP com 2

CLR.B - (A7)

_SetResLoad ; (AutoLoad:BOOLEAN)

CLR.L - (A7)
PUSH.L #'DRVR'
PEA data3b ; len= 12

_GetNamedResource ; (theType:ResType;

PUSH.B #1

name:Str255) :Handle

230: A99B L _SetResLoad ; (AutoLoad:BOOLEAN)

First off, we need to find the line that calls the error procedure we just finished looking at. In this case the line will be either JSR PUTREGISTERDLOG or
BSR PURREGISTERDLOG. We find the correct line just above lab 13. Now, quickly note the structure we are dealing with: we have JSR
PUTREGISTERDLOG (which does all the error dialog stuff) followed by a JMP instruction. So the program is leaving the main flow of control after doing
the error dialog. This is important because we can see that logically, there should be a branch that skips this piece of code and continues on with lab 13. If we
scan backwords from the JSR PUT... we see a bunch of Initialization traps preceded by some Moves - but then notice this code:

JSR proc2

TST vab 2 (A6)
BEQ.S lab 13
LEA -2 (A7) ,A7
PUSH.L vab 3 (A6)
JSR proc29
POP DO

BNE.S lab 13

Here is where I forget what the original code looked like so your listing might say BEQ.S lab 13 (for the second branch that is). Anyways, this code looks
really good since it branches around the error section. At this point, we might hazard a guess and simply make these Branch instructions always execute by
changing them to BRA lab 13. This might be an incorrect crack since the program could be making other checks above this code - we can eliminate this
chance by continuing scanning upwards looking for references to lab 13 until the beginning of this procedure. What I would do in a case like this is make a
real fast check of about 50 or so lines of code above this looking for branches refering to lab 13. If I find one, modify it...if not, then make the crack and test it.
If the crack fails, then I would know to keep looking.

A quick note: The flow of the program seems to suggest that merely changing the first branch from BEQ to BRA would suffice since this instruction always
executes (it is not branched around anywhere) and once this instruction branches to lab 13 there would be no need to change the second branch. However, I am
writing this having already cracked this program and the method I used was to change the second branch only. Since I know that this works and cannot test any

other method (not having a network at my disposal), I will proceed in this manner. The would-be cracker could certainly try changing the first branch and it
looks to me as if this would work.

So how is the crack applied? Well, in this case, it looks like the program branches to lab 13 only if the serial check is OK (i.e. there are no extra copies running
on the network) so we need to to make this branch always execute. The easiest way to do this is to change the BNE.S lab 13 to BRA.S lab 13 - branch not
equal turns into branch always. So, simply pop over to Resedit and open the proper resource (INIT in this case). To determine the ID of the resource, look at
the top of the procedure window in Nosy. The first line will contain an s# followed by a number. This is the segment number or ID # of the resource (in this
case it is obvious since there is only one INIT resource, but for CODE resources this is really handy). Once the resource is open (make sure you do not have
the Resedit disassembler running - if you do, select Open Using Hex Editor from the Resource menu) scan down to the line that most closely matches the line
you want to modify - in this case our line is 1D2 so find line 1DO0 in Resedit and look over 2 bytes. There should be the code 6646. Just click in front of the
66, backspace to delete it, and type 60 (You can find these op-code numbers in the Cracker's Guide Part 1). Now quit and save changes and the crack is
complete.

Infini-d 1.1

This program uses the common serial number / personalize dialog scheme.

Step 1: Where to start looking.

We have two good options here: 1) Find the Dialog ID # in Resedit and use Nosy's Trap Refs List or 2) trap ModalDialog in TMON and start tracing from
there. Itend to use the second method, usually because I can implement the crack on the fly in TMON and actually run the program. Then I go back later and
figure out how do a full crack with Nosy. Note that withe the second method we do not have to go through every stupid dialog in the program. Rather we can
simply find the unfriendly ModalDialog and let TMON tell us which code resource we are in.

First, drop into TMON and set a trap intercept for _ModalDialog then exit TMON and launch Infini-D. TMON will proceed to stop execution at the first
ModalDialog trap. Since it is possible for a program to have ModalDialog traps before the one that actually does the serial number stuff my first step is to
immediately exit TMON and keep track of

how many ModalDialogs occur before the serial number dialog comes up. In this case it is the first ModalDialog, so I would have to then quit and start over,
this time not exiting TMON when the trap occurs.

Once you are in TMON, open an Assembly window to (PC) to look at the code that is executing. I forget exactly, but essentially what you would see is the
ModalDialog trap followed by a couple of meaningless instructions and an RTS. Since nothing happens after the ModalDialog, we would need to Step through
the RTS to get back to the procedure that called this one.

I should make a quick note here: this technique of making an on the fly crack via TMON usually means that you are going to ruin the application, i.e. you are
going to end up with a serialized program that no longer needs to be cracked. This is not a true crack, rather this is a bypass - once this is done, the program is
personalized and ready to run; in a sense you are letting the program crack itself. If you wanted to make a true cracked copy, you would have to look at exactly
which branches were modified in TMON and then go into Resedit and change the same instructions (with an un-serialized copy of the application).

OK, enough about that. Here is the code you would see:

PEA $157A (A5)

MOVE.L $000C(A6),- (A7)

_Modalbialog
UNLK A6
RTS

Since the procedure ends right after the ModalDialog call, we need to step through the RTS to see what called this procedure...and here is that code:

001E50B4: LINK.W A6, #SFFFE
001E50B8: PEA "FFFE (A6)

001E50BC: CLR.L - (A7)

001E50BE: JSR $1572 (A5)
001E50C2: ADDQ.L #8,A7

001E50C4: CMPI.W #50001, "FFFE (A6)
001E50CA: BEQ.S ~$001E50D8
001E50CC: CMPI.W #$0002, "FFFE (A6)
001E50D2: BEQ.S ~"$001E50D8
001E50D4: MOVEQ #500, DO

001E50D6: BRA.S ~$001E50DA
001E50D8: MOVEQ #501, D0

O01E50DA: TST.W DO

001E50DC: BEQ.S ~$S001E50BS8
O01E50DE: CMPI.W #$0001, "FFFE (A6)
001E50E4: BNE.S ~"S001E50EA
001E50E6: MOVEQ #$01, D0

001E50E8: BRA.S ~$001E50EC
001E50EA: MOVEQ #$00, DO

001E50EC: UNLK A6

001E50EE: RTS

Well, there is quite a bit of comparing and branching going on here so we had better see if we can figure out what is happening. After the Link, the dialog
handle is pushed on the stack, space for a return value (or maybe a parameter with value 0) is put on the stack and then the ModalDialog procedure is called.
This is pretty standard. Next, the stack is restored to its original value and something is compared to 1, branch if so, then compare the same thing to 2 and
branch if so. Notice an important thing here, namely that this procedure never calls GetDItem or GetlText nor does it call any more subroutines so this
procedure cannot be the one that checks the serial number. So it is probably a safe bet that this procedure is testing to see what exactly the user did - hit OK?
hit Cancel? Type in a keystroke? Assuming for the moment that this is the case, take a wild guess what the various dialog item numbers are? You guessed it...1
is the OK button, 2 is the Cancel button. Now look at the code and you can quickly see what is happening (still assuming our item number theory is correct).
First, if the item number hit was one (OK button) then branch down, and put a 1 in DO. If the item number hit was 2 (Cancel button) then do the same thing.
Otherwise put a zero in D0. Finally, TST DO and if it was 0 (neither button hit) then loop back and call ModalDialog again. At this point the program knows
one of the buttons was hit. So, if it was not the OK button, branch down and put 0 in DO otherwise put a 1 in DO (so that's Cancel

=0, OK =1). When we look at the procedure that called this one, we know that DO will tell that procedure what happened (either OK or Cancel).

Note that this is one of those problem ModalDialog calls that exits everytime you hit a keystroke so you cannot just type in your name and serial number, hit
OK to get back to TMON, and crack the sucker. Rather you have to either 1) settle for only typing in one letter before you crack it or 2) set a breakpoint just
past the part were it tests for the OK button being hit, clear the ModalDialog trace, and exit - TMON won't interrupt until you hit the OK button and the
breakpoint is encountered.

Finally, here is the last piece of code - the procedure that called the above procedure:

001lE4FBE:

001E4FCO:

001E4FC4:

001E4FC8:

001E4FCE:

001E4FDO:

001lE4FD4:

001E4FDS8:

001E4FDC:

001E4FDE:

001lE4FE2:

O001lE4FE6:

001lE4FES8:

001lE4FEC:

001E4FFO:

O01lE4FF2:

001lE4FF6:

O01lE4FF8:

ADDQ.

JSR

MOVE

CMPI.

BNE.S

PEA

MOVE.

JSR

ADDQ.

PEA

JSR

ADDQ.

MOVE

TST.W

BNE.S

MOVE.

CLR.W

MOVE

L

W

L

L

W

W

#6,A7
~$001E50B4
DO, ‘FFFE (A6)
#$0001, "FFFE (A6)
~$001E5012
“FEF8 (A6)
#$000A, - (A7)
~$001E4F58
#6,A7
“FEF8 (A6)
~$001E52AC
#4,A7
DO, “FFFC (A6)
“FFFC (A6)
~$001E5012
#$0001, - (A7)
- (A7)

#50034, - (A7)

Here is where we returned from the above procedure. 1 = OK, 0 = Cancel

Branch if Cancel hit

O01E4FFC:JSR $107A (A5)
001E5000: ADDQ.L #6,A7
001E5002: MOVE.L 582(A5),- (A7)
001E5006: MOVE.W #S000A, - (A7)
O001E500A:CLR.W - (A7)
001E500C: MOVE.W #S$7FFF,- (A7)

001E5010: SelIText

001E5012: CMPI.W #$0001, FFFE (A6) True if OK was hit
001E5018:BNE.S ~$001E5020

001E501A:TST.W " FFFC (A6) Unknown: returned value from JSR above
001E501E: BEQ.S “~$001E4FCO

001E5020: CMPI.W #3$0001, FFFE (A6)

001E5026:BNE.S ~"$001E5070

001E5028:PEA "FF38 (A6)

001E502C: MOVE.W #$0006,- (A7)

001E5030:JSR ~"$S001E4F58

001E5034: ADDQ.L #6,A7

Well, there is a lot of crap here and if you decided to trace the two JSRs you would be in for a long ride. The first thing to try is to deduce what will happen
based on what we already know - we know that if the wrong serial number is entered, the program will go back to ModalDialog to let you change it. So we
need to find a branch that goes back above line 1E4FCO0 (the ModalDialog JSR). If we can find that branch and avoid it, we should be safe. So we will start
tracing down from where the program returned, not making any assumptions yet, but looking at where the branches go. Right away you will note two JSRs.
Take a look at the parameters passed, and you will note the pair of PEA FEF8(A6) instructions. So this same piece of information is being passed to both
subroutines - nothing to write home about, but interesting. The real key you should notice here is that there is a TST and BNE after the second subroutine.
This is the first chance the program has to make any decisions (although what decisions we don't know). Let's assume this branch does not execute (you could
assume either way and wind up with the answer) i.e. FFFC(A6) = 0 - some stuff happens that we don't care too much about yet, some text is selected, and the
button is tested. If it was OK, the return value from the second JSR is TSTed and if it was zero (which we are assumming), branch back to 1E4FCO - back to
the ModalDialog JSR. So this route is incorrect. Going back, we now need to assume that the branch at line 1E4FFO0 did execute. This time, we jump right to
the button check, skip the branch since OK was hit, and again TST the return value from the second JSR. Since the branch executed, this value cannot be zero,
so execution proceeds. Looking down a few lines we note that there does not seem to be any more branches back to the ModalDialog JSR so we can
tentatively assume that this is the end of the protection.

To apply the crack immediately, just make sure that branch executes. You can do this by typing BRA right over the BNE in TMON. If, however, you want to
make a cracked, unserialized copy (which you can then serialize with anything you like) you need to figure out where code will be in Resedit and change that
BNE to BRA. Unlike the listings I have pasted into this document, TMON will tell you exactly where the code is in the file. Refer to the above section on
TMON MacNosy and Resedit for details, but essentially just find the Code Resource ID # and the offset from the TMON listing. Then Exit TMON and let
Infini-d cancel out. Next open it the proper code resource in Resedit, scan down to the proper offset, and find the BNE (which is 66 in hex) and change it to
BRA (60 in hex). Save changes and you are set.

FrameMaker 3.0

Serial number dialog scheme again. This one, however, presents a slight variation - Nosy won't disassemble it properly. This means that you will have to do
all your cracking from within TMON.

Step 1: Where to start looking.

The only choice we have is to break in via TMON. The simplest way to do this is to drop into TMON, set a Trace Interrupt for ModalDialog and Exit. Now
launch Framemaker 3.0 and wait for TMON to break in Here is the code you would see: (note that this listing is from TMON Pro - a TMON 2.8.x listing will
be slightly different)

005B4F88: 'CODE'®$0003f$040C+$0284 PEA SO1AA (A5)

005B4F8C: 'CODE'®S$0003f$040C+$0288 PEA “FDEC (A6)

005B4F90:P 'CODE'®$0003f$040C+$2.. ModalDialog

005B4F92:'CODE'®S$0003f$040C+$028E MOVE.W “FDEC (A6), DO

005B4F96: 'CODE'®$0003f$040C+$0292 EXT.L DO

005B4F98: 'CODE'®$0003f$040C+$0294 MOVEQ #$01, D1

005B4F9A: 'CODE'®$0003f$040C+$0296 CMP.L DO, D1

005B4F9C: 'CODE'®$0003f$040C+$0298 BNE ~$005B50EA ; "CODE'®S0003f$040C+$3E6
005B4FAQ:* 'CODE'®$0003f$040C+$2.. CLR.W “FDEC (A6)

005B4FA4: 'CODE'®$0003f$040C+$02A0 CLR.B (A3)

005B4FAG: 'CODE'®S$0003f$040C+$02A2 TST.L “96FA (A5)

O05B4FAA: 'CODE'®$0003f$040C+$02A6 BEQ.S ~$005B4FC4 ; "CODE'®$0003f3$040C+$2C0
005B4FAC: 'CODE'®$0003f$040C+$02A8 MOVE.L A4,- (A7)

005B4FAE: 'CODE'®S$0003f$040C+$02AA PEA $3802 ;$000037D8+$2A
005B4FB2: 'CODE'®$0003f$040C+$S02AE JSR $1702 (A5)

005B4FB6: 'CODE'®S$0003f$040C+$02B2 MOVE.L A3, - (A7)

005B4FB8: 'CODE'®$0003f$040C+$02B4 MOVE.L A4,- (A7)

005B4FBA: 'CODE'®$0003f5040C+$02B6 JSR $419A (A5)
005B4FBE: 'CODE'®$0003f5040C+$02BA LEA $0010 (A7) ,A7
005B4FC2:'CODE'®$0003f5040C+$02BE BRA.S ~$005B4FES8 ; '"CODE'®$0003f$040C+$2E4

005B4FC4:'CODE'®S0003f5040C+$02C0 MOVE.L “FDES8 (A6),- (A7)

005B4FCS8

005B4FCA

005B4FCC

005B4FDO

005B4FD4

005B4FDS8

005B4FDA

005B4FDE

005B4FEOD

005B4FE4

005B4FE6

005B4FES

005B4FEA

005B4FEE

005B4FFO

005B4FF2

005B4FF6

005B4FFC

005B5000

005B5002

005B5006

If you try to step through this and enter your name etc., you will find that ModalDialog is exiting after any keystroke. The way to get around this hassle is to
get rid of the Trace Interrupt and set a breakpoint after the OK button is hit. How you ask? Well, take a look at the code that follows the ModalDialog. First,
DO gets the dialog item that was modified. Next D1 gets the value 1 and the two are compared. From Resedit, you can find the dialog item numbers for all the
items and it turns out that item 1 is the OK button, and item 5 is the serial number - these are the two important ones since the program can't proceed until the
OK button is hit (we don't care about the cancel button being hit) and then the program must check the serial number. Following the compare, we note that if
they are not equal (i.e. OK button not hit) then it goes off somewhere. The next instruction must be the one that executes after the user hits the OK button. So
set your breakpoint at the line that reads CLR.W FDEC(A6) which is at address SB4FAO (this will vary) - and in fact you can see the asterisk in the listing
denoting that I have done just that. Now exit, enter your name and company and serial number (keep typing anything until the OK button lights up) and hit

:'CODE'®$0003f5$040C+502C4

:'"CODE'®$00035$040C+502C6

:'CODE'®$0003f$040C+502C8

:'"CODE'®$00035$040C+502CC

:'CODE'®$0003f$040C+502D0

:'"CODE'®$0003f$040C+502D4

:'CODE'®$0003f$040C+502D6

:'"CODE'®$0003f$040C+S02DA

:'CODE'®$0003f$040C+502DC

:'"CODE'®$0003f$040C+S02E0Q

:'CODE'®$0003f$040C+S02E2

:'"CODE'®$0003f$040C+S02E4

:'CODE'®$0003f$040C+S02E6

:'"CODE'®$0003f$040C+S02EA

:'CODE'®$0003f$040C+S02EC

:'"CODE'®$0003f$040C+S02EE

:'CODE'®$0003f$040C+S02F2

:'"CODE'®$00035$040C+S02F8

:'CODE'®$0003f$040C+S02FC

:'"CODE'®$00035$040C+S02FE

:'CODE'®$0003f5$040C+50302

MOVEQ #$05, D0

MOVE.W DO, - (A7)

PEA “FDEE (A6)

PEA "FDFO (A6)

PEA “FDF4 (A6)
_GetDItem

TST.L "FDFO (A6)

BEQ.S ~S005B4FES
MOVE.L “FDFO (A6),- (A7)

MOVE.L A3,- (A7)

_GetIText

MOVE.L A3,- (A7)

JSR ~$005B5670

TST.L DO

ADDQ.L #4,A7

BMI ~3005B50C8

CMPI.L #$00000005,D0

BGT ~3005B50C8

ADD.L DO, DO

MOVE.W ~$005B500A(DO.L),DO

JMP ~$005B5008 (DO .W)

OK. Now TMON breaks in again at the breakpoint. Now we can begin the crack.

Determining how to implement the crack.

; 'CODE'®$00035$040C+S$2E4

; 'CODE'®$000355040C+596C

; '"CODE'®$00035$040C+$3C4

; '"CODE'®$00035$040C+$3C4

; '"CODE'®$00035$040C+35306

; "CODE'®$0003f$040C+$304

Before you continue, think about what the program must do at this point if it wants to validate your serial number (here it helps to have read Inside Mac on
dialogs). First the program must obtain a pointer to the dialog item #5 (the serial number field) and then it must obtain a pointer to the text contained in that
item. Knowing this, you can just scan down until you see a GetDItem trap followed closely by a GetlText trap. After this last trap, the program can do its
validation. Here is that piece of code:

MOVE.L A3,- (A7)
_GetIText

MOVE.L A3, - (A7)

JSR ~3005B5670
TST.L DO

ADDQ.L #4,A7

BMI ~$005B50C8
CMPI.L #$00000005,D0
BGT ~$005B50C8
ADD.L DO, DO

MOVE.W ~$005B500A(D0.L), DO

JMP ~3005B5008 (DO .W)

We can note that A3 is the pointer that will point to the text after the trap. Once A3 has the text, a subroutine is called and DO is tested. At this point, we
cannot be sure whether the branch executes if the serial passed or failed, so we had better take a quick look at the code at address SB50CS8. I am not going to
show it here, but that code does some crap then calles ParamText and then a Dialog call so it is probably safe to guess that the branch above jumps to the error
code.

With this assumption in mind, what can we do about it? An initial guess would be to just make that BMI either not execute or even better, make the BMI
branch down to the ADD.L D0,D0. Unfortunately, if you look at the last two lines, you can see that DO not only determines whether the code branches to the
error routine, but is then used for a JMP instruction so we had better take care of DO. Let's take a quick look at that JSR up a few lines that sets DO in the first
place and remember, we are trying to figure out what DO should be set to. Also remember that the branch is a BMI meaning that the error occurs if the high bit
of DO is set.

004B1508:'CODE'®$0003f$04C8+$096C LINK.W A6, #SFF00
004B150C: 'CODE'®$0003f$04C8+$0970 MOVEM.L A3/A4,- (A7)
004B1510: 'CODE'®$0003f$04C8+$0974 LEA “FF00 (A6) , A4
004B1514:'CODE'®$0003f$04C8+$0978 MOVEA.L $0008 (A6),A3
004B1518: 'CODE'®$0003f$04C8+$097C MOVEQ #500, DO
004B151A:'CODE'®$0003f$04C8+$097E MOVE.B (A3),DO0

004B151C: '"CODE'®$0003f$04C8+50980 MOVEQ #$06,D1

004B151E

004B1520

004B1522

004B1524

004B1526

004B1528

004B152A

004B152C

004B152E

004B1530

004B1532

004B1534

004B1536

004B153A

004B153E

004B1540

004B1544

004B1546

004B1548

004B154cC

004B154E

004B1552

004B1554

004B1556

004B1558

004B155C

004B1560

004B1562

004B1566

004B1568

004B156A

:'CODE'®$0003f$04C8+50982

:'"CODE'®$00035$04C8+50984

:'CODE'®$0003f$04C8+50986

:'"CODE'®$00035$04C8+50988

:'CODE'®$0003f$04C8+5098A

:"CODE'®$00035$04C8+5098C

:'CODE'®$0003f$04C8+S098E

:'"CODE'®$00035$04C8+50990

:'CODE'®$0003f$04C8+50992

:'"CODE'®$00035$04C8+50994

:'CODE'®$0003f$04C8+50996

:'"CODE'®$00035$04C8+50998

:'CODE'®$0003f$04C8+5099A

:'"CODE'®$00035$04C8+S099E

: "CODE'®$0003f$04C8+S09A2

:'"CODE'®$0003f$04C8+509A4

:"CODE'®$0003f$04C8+S09A8

:"CODE'®$0003F$04C8+S09AA

: "CODE'®$0003f$04C8+S09AC

:'"CODE'®$00035$04C8+509B0

:"CODE'®$0003f$04C8+S09B2

:'"CODE'®$00035$04C8+509B6

: "CODE'®$0003f$04C8+S09B8

:'"CODE'®$0003f$04C8+S09BA

: "CODE'®$0003f$04C8+S09BC

:'"CODE'®$00035$04C8+509C0

:'CODE'®$0003f5$04C8+509C4

:'"CODE'®$00035$04C8+509C6

:"CODE'®$0003f$04C8+$09CA

:'"CODE'®$0003f$04C8+509CC

:"CODE'®S$0003f$04C8+S09CE

CMP.L

BLE.S

MOVEQ

BRA.S

MOVEQ

MOVE.B

MOVEQ

CMP.L

BGE.S

MOVEQ

BRA.S

MOVE.L

PEA

JSR

MOVE.L

JSR

MOVE.L

MOVE.L

JSR

TST.L

LEA

BEQ.S

MOVEQ

BRA.S

MOVE.B

SUBI.B

BCS.S

CMPI.B

BHI.S

MOVEQ

MOVE.B

DO, D1
~"$004B1526 ; "CODE'®$0003f$04C8+$98A
FF, DO
~"$004B1592 ; "CODE'®$0003f$04C8+$9F6
#$00, D0
(A3),DO0
#$28,D1
DO, D1
~$004B1534 ; '"CODE'®$0003f504C8+5998
FF, DO
~$004B1592 ; '"CODE'®$0003f504C8+S$9F6
A4, - (A7)
$3802
$1702 (A5)
A4, - (A7)
$0532 (A5)
A3, - (A7)
A4, - (A7)
$0392 (A5)

DO

$0014 (A7) ,A7

~$004B1558 ; '"CODE'®3$0003f$04C8+3$9BC
#$05, D0
~$004B1592 ; 'CODE'®S$0003f$04C8+59F6

$0001 (A3),DO

#$30, D0
~$004B1590 ; "CODE '®$0003f$04C8+$9F4
#$02, D0
~$004B1590 ; "CODE '®$0003f$04C8+$9F4
#$00,D1

DO, D1

;$000037D8+$2A

004B156C: 'CODE'®$0003f5$04C8+$09D0 ADD.W D1,D1
004B156E: 'CODE'®$0003f504C8+$09D2 MOVE.W ~$004B1576(D1.W),D1 ; '"CODE'®S$0003f$04C8+59I

004B1572:'CODE'®$0003f$04C8+$09D6 JMP ~$004B1574 (D1.W) ; 'CODE'®$00035504C8+59D8

There are no traps here to quickly tell us what is happening, but we can quickly look at the lines that affect DO. Basically, there are a bunch of interspersed
MOVEQ instructions putting various values into DO. One of the values is $FF which (since the high bit of $FF is set - in fact, all the bits of $FF are set) must
trigger the error in the previous procedure. Other values include 5 and 0. Right now, that is enough information to proceed with the previous procedure - if we
need more in depth info, we can always come back. So we have the following code again:

MOVE.L A3,- (A7)

JSR ~$005B5670

TST.L DO

ADDQ.L #4,A7

BMI ~$005B50C8

CMPI.L #$00000005,D0

BGT ~$005B50C8

ADD.L DO, DO

MOVE.W ~$005B500A(D0.L), DO

JMP ~3005B5008 (DO .W)

Once again, we have an initial BMI which tells us that $FF won't work for DO. We also have BGT after comparing DO with 5 which branches to the error - so
DO must be between 0 and 5 (the other values we noted from the subroutine above). At this point, I would (and did) simply try inserting values into DO. I
started with 5 and the program went into Demo mode - strike one. Next I tried 1 and some other error occured. Finally, I tried 0 and the program continued
flawlessly.

So you are asking, how exactly might you go about inserting these values into DO? Consider: once DO is set to the proper value, the two branches become
meaningless since they would not execute anyways (they only execute if there is an error). This little tidbit tells us that we can safely overwrite these
instructions with anything we like. So we have several free bytes to put our own code into (don't panic yet - this is pretty straightforward) and all our code has
to do is set DO to 0 then proceed. One quick note: Never Never Ever modify code that affects the stack. If you do, you can easily cause system errors later on
down the road. In the above code, this translates into not changing the ADDQ.L #4,A7 (A7 is the stack pointer, remember?). So what is the easiest way to put
0 into DO? Use a MOVEQ instruction. This is particularly nice because you probably do not know the machine hex code for instructions (like me). But that
subroutine we looked at before is chalk full of MOVEQ instructions. If you look, a MOVEQ 0 #0,D0 translates into 70 00. So far so good except that the
stupid BMI is one of those 4 byte branches. So we still have two bytes left that will be garbage since we just changed the first two. This is an excellent
candidate for a NOP instruction - a two byte instruction that does absolutely nothing. The code for this (from the Cracker's Guide Part 1) is 4E 71.

So, open a dump window to the PC and find the BMI (I think it is 68 00 00 D4 or something like that). Change the four values to 70 00 4E 71 and now the
program loads DO with the correct value and proceeds as if nothing had happened. Now you have the crack, but you want to make a cracked / un-serialized
copy right? So, unstuff a fresh copy of the application, open it in Resedit, and open the proper CODE resource. To find the ID #, look back at the TMON
listing. It says CODE 0003 plus some benutia about the File reference number and then +nnnn where nnnn is the offset from the beginning of the Code
resource. There is all you need. Open CODE ID 3 and jump down to line 2E8 (since 2EE is our byte) and change the 68 00 00 D4 to 70 00 4E 71. Now run it
and enter anything you like for the serial number.

QuickFormat 7.01

[due to burn-out, the final sections have not been written up]

33E:

33E: 4E56
342: 48E7
346: 594F
348: 2F3C
34E: 3F3C
352: A81F
354: 285F
356: 200C
358: 6656
35A: 594F
35C: 7004
35E: 2F00
360: 4EAD
364: 285F
366: 2F0C
368: 4EAD
36C: 2054
36E: 20BC
374: 2F0C
376: 2F3C
37C: 3F3C
380: 487A
384: A9AB

name:Str255)

386: 554F
388: A9AF
38A: 4AS5F
38C: 6714
38E: 3F3C
392: 1F3C
396: 4EAD
39A: 554F
39C: A9AF
39E: 4EAD
3A2: 2FO0C
3A4: ASAA
3A6: 2FO0C
3A8: A9RO
3AA: 2F0C
3AC: 4EAD
3B0: 2FO0C
3B2: 4EAD
3B6: 2E3C
3BC: 2054
3BE: BE90
3C0: 6606
3C2: 422D
3C6: 6020
3C8: 554F
3CA: 2F07
3CC: 4EBA
3D0: 1B5F
3D4: 102D

FFE4
0108

6465
0080

0082

0092
000F
6465

0080
007¢C

008B
0001
0462

0452

009A

0092
176F

FDE2

FE68
FDE2
FDE2

6D6F

423F

6D6F

7C4E

ID:INTEGER) :Handle

QUAL CHECKFOR ; b# =508 s#3 =procl96
;-refs - 3/INITPROG
'NV..' CHECKFOR LINK A6, #-S1C
'H...' MOVEM.L D7/A4,- (A7)
'YO! SUBQ #4,A7
' /<demo' PUSH.L #'demo'
oLt PUSH #128
oLt _GetlResource ; (theType:ResType;
v POP.L A4
L. MOVE.L 2A4,DO0
30003B0O BNE.S lih 2
'YO!' SUBQ #4,A77
'p.' MOVEQ #4,D0
RV PUSH.L DO
10005EA JSR NewHandle (A5)
(Ot POP.L A4
v/ PUSH.L A4
1000614 JSR HLock (A5)
v MOVEA.L (A4),A0
'L .B?! MOVE.L #S$F423F, (AO)
v/ PUSH.L A4
' /<demo' PUSH.L #'demo'
oLt PUSH #128
30003FE PEA data209 ; len= 2

oLt _AddResource ; (theResource:Handle;

theType:ResType;

'uo’ SUBQ #2,A7
L _ResError ; :0SErr
'J ! TST (A7) +
30003A2 BEQ.S lih 1
oLt PUSH #139
o<t PUSH.B #1
2000B7C JSR DOSTANDA (A5)
'uo’ SUBQ #2,A7
. _ResError ; :0SErr
20009FE JSR DOERROR (A5)
v/ lih 1 PUSH.L A4
L _ChangedResource ; (theResource:Handle)
v/ PUSH.L A4
L _WriteResource ; (theResource:Handle)
v/ PUSH.L A4
100061E JSR HUnLock (A5)
v/ lih 2 PUSH.L A4
1000614 JSR HLock (A5)
'.<.0|N' MOVE.L #$176F7C4E,D7
T MOVEA.L (A4),A0
oLt CMP.L (AO) ,D7
30003C8 BNE.S 1lih 3
-$21E CLR.B glob73 (AD)
30003E8 BRA.S lih 4
'uo’ lih 3 SUBQ #2,A7
RV PUSH.L D7
3000236 JSR DODEMODI
-$21E POP.B glob73 (A5)
-$21E MOVE.B glob73 (A5),DO0

theID:INTEGER;

FEEE

IS.I
30003E8
ITI
l/.l
l/.l
l/.l
100061E
"L...t
'N/\'
lNul

lih 4

vap 1
vap_ 2
vap_ 3
vap 4
vap_ 5

SUBQ.B #1,D0
BEQ.S lih 4
MOVEA.L (A4),A0
MOVE.L D7, (A0)

PUSH.L A4
_ChangedResource ; (theResource:Handle)
PUSH.L A4
_WriteResource ; (theResource:Handle)
PUSH.L A4
JSR HUnLock (A5)
MOVEM.L (A7)+,D7/A4
UNLK Ab
RTS
QUAL GETPASSW ; b# =31 s#l1 =proclid
VEQU -288
VEQU -280
VEQU =276
VEQU -274
VEQU =272
VEND

;—refs - DOCOMMAN

'NV. LT
'H...'
-$102
1000472
100061C
100180A
1000512
-$146
IYOI
telL!
IB.I
'p.'
l/.l

'(_'
l/.l
teL!
200FEEC
200FEES
200FEEO

' v

VAR box:Rect)

'B.'

200FEEE
200FEEE
100049C
200FEES
200FEFO0

100060A

3D8: 5300

3DA: 670C

3DC: 2054

3DE: 2087

3E0: 2F0C

3E2: A9AA

3E4: 2F0C

3E6: A9BRO

3E8: 2F0C

3EA: 4EAD 009A

3EE: 4CDF 1080

3F2: 4ESE

3F4: 4E75
Finder 7 Menus

458:

458:

458: 4E56 FEDS8

45C: 48E7 0018

460: 4A2D FEFE

464: 670C

466: 487A 01B4

46A: 4EBA 139E

46E: 6000 00A2

472: 3F2D FEBA

476: A998

478: 594F

47A: 3F3C 0101

47E: 42A77

480: 70FF

482: 2F00

484: A97C

behind:WindowPtr) :DialogPtr

486: 285F

488: 2F0C

48A: 3F3C 0002

48E: 486E FEEC

492: 486E FEES8

496: 486E FEEO

49A: A98D
item:Handle;

49C: 42A7

49E: 486E FEEE

4A2: A991

474 : 0Co6E 0001

4AD: 66F0

4AC: 2F2E FEES8

4B0: 486E FEFO

4B4: A990

4B6: 487A 0152

4BA: 486E FEFO

200FEFO

GETPASSW LINK A6, #-5128

lap 1

lap 2

MOVEM.L A3-A4,- (A7)
TST.B glob59 (A5)
BEQ.S lap_l

PEA data?23 ; 'Password has already
JSR OUTPUTTE

BRA lap 5

PUSH glob28 (A5)

_UseResFile ; (frefNum:RefNum)

SUBQ #4,A7

PUSH #257

CLR.L - (A7)

MOVEQ #-1,DO0

PUSH.L DO

_GetNewDialog ; (D1gID:INTEGER; wStorage:Ptr;

POP.L Ad
PUSH.L A4
PUSH #2
PEA vap_ 3 (A6)
PEA vap_ 2 (A6)
PEA vap_ 1 (A6)

GetDItem ; (dlg:DialogPtr; itemNo:INTEGER; VAR kind:INTEGER; VAR

CLR.L - (A7)

PEA vap 4 (A6)

_ModalbDialog ; (filterProc:ProcPtr; VAR itemHit:INTEGER)
CMPI #1,vap_4 (A6)

BNE lap 2

PUSH.L vap_ 2 (A6)

PEA vap_5 (A6)

_GetIText ; (item:Handle; VAR text:Str255)
PEA data2?2?2 ; 'ccbhbl87efH28b91laf’

PEA vap_ 5 (A6)

4BE: 4EBA FC4A

4C2: 6642

4C4: 594F

4C6: 486E FEFO

4CA: A906

4CC: 265F

4CE: 2FO0B

4D0: 2F3C 5354

4D6: 3F3C 0080

4DA: 487A 012C

4DE: AO9AB

theID:INTEGER;

4E0: 3F2D FEBA

4E4: A999

4E6: 1B7C 0001

4EC: 487A 00CO

4F0: 4EBA 1318

4F4: 4A2D FEFE

4F8: 6714

4FA: 2F2D FEBO

4FE: 487A 0086

502: A91A

504: 6008

506: 487A 001A

50A: 4EBA 12FE

50E: 2F0C

510: A982

512: 4CDF 1800

516: 4ESE

518: 4E75

5220

FEFE

100010A
1000506
IYOI
200FEFO0
'&_'
l/.l
'/<STR
et
1000608

name:Str255)

-$146
-$102
10005AE
100180A
-$102
100050E
-$150
1000586
100050E
1000522
100180A
v/.v

'

lap 3
lap 4

lap 5

JSR procéb
BNE.S lap 3
SUBQ #4,A7
PEA vap_5 (A6)
_NewString ; (theString:Str255):StringHandle
POP.L A3
PUSH.L A3
PUSH.L #'STR '
PUSH #128
PEA data?l ; len= 2
_AddResource ; (theResource:Handle;
PUSH glob28 (A5)
_UpdateResFile ; (frefNum:RefNum)
MOVE.B #1,glob59 (AS5)
PEA data20 ; 'Thanks for registeri
JSR OUTPUTTE

TST.B glob59 (AS)
BEQ.S lap 4
PUSH.L glob25 (A5)

PEA datal9 ''"Thank you for payin
_SetWTitle ; (theWindow:WindowPtr; title:Str255)
BRA.S lap 4

PEA datals8 ; 'For only $10, you ca

JSR OUTPUTTE

PUSH.L A4

_CloseDialog ; (dlg:DialogPtr)

MOVEM.L (A7)+,A3-A4

UNLK Ab

RTS

theType:ResType;

